题目内容

3.设直线l经过点M和点N(-1,1),且点M是直线x-y-1=0被直线l1:x+2y-1=0,l2:x+2y-3=0所截得线段的中点,求直线l的方程.

分析 记直线l与两平行线的交点为C、D,CD的中点为M,由两直线交点坐标、中点坐标的求法得到点M的坐标,然后利用待定系数法求直线 l的方程.

解答 解:设直线 x-y-1=0与l1,l2的交点为 C,D,
则$\left\{\begin{array}{l}{x+2y-1=0}\\{x-y-1=0}\end{array}\right.$,∴x=1,y=0,∴C(1,0)
$\left\{\begin{array}{l}{x+2y-3=0}\\{x-y-1=0}\end{array}\right.$,∴x=$\frac{5}{3}$,y=$\frac{2}{3}$,∴D($\frac{5}{3}$,$\frac{2}{3}$)
则C,D的中点M为($\frac{4}{3}$,$\frac{1}{3}$).
又l过点(-1,1)由两点式得l的方程为$\frac{y-\frac{1}{3}}{1-\frac{1}{3}}=\frac{x-\frac{4}{3}}{-1-\frac{4}{3}}$,即2x+7y-5=0为所求方程.

点评 本题考查了中点坐标公式、直线的交点,考查了计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网