题目内容
3.设直线l经过点M和点N(-1,1),且点M是直线x-y-1=0被直线l1:x+2y-1=0,l2:x+2y-3=0所截得线段的中点,求直线l的方程.分析 记直线l与两平行线的交点为C、D,CD的中点为M,由两直线交点坐标、中点坐标的求法得到点M的坐标,然后利用待定系数法求直线 l的方程.
解答 解:设直线 x-y-1=0与l1,l2的交点为 C,D,
则$\left\{\begin{array}{l}{x+2y-1=0}\\{x-y-1=0}\end{array}\right.$,∴x=1,y=0,∴C(1,0)
$\left\{\begin{array}{l}{x+2y-3=0}\\{x-y-1=0}\end{array}\right.$,∴x=$\frac{5}{3}$,y=$\frac{2}{3}$,∴D($\frac{5}{3}$,$\frac{2}{3}$)
则C,D的中点M为($\frac{4}{3}$,$\frac{1}{3}$).
又l过点(-1,1)由两点式得l的方程为$\frac{y-\frac{1}{3}}{1-\frac{1}{3}}=\frac{x-\frac{4}{3}}{-1-\frac{4}{3}}$,即2x+7y-5=0为所求方程.
点评 本题考查了中点坐标公式、直线的交点,考查了计算能力,属于基础题.
练习册系列答案
相关题目
18.在一球面上有A,B,C三点,如果AB=4$\sqrt{3}$,∠ACB=60°,球心O到平面ABC的距离为3,则球O的表面积为( )
| A. | 36π | B. | 64π | C. | 100π | D. | 144π |
8.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;\;,\;\;b>0})$的一个焦点为(5,0),渐近线方程为$y=±\frac{3}{4}x$,则该双曲线的方程为( )
| A. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ | B. | $\frac{x^2}{9}-\frac{y^2}{16}=1$ | C. | $\frac{x^2}{4}-\frac{y^2}{3}=1$ | D. | $\frac{x^2}{3}-\frac{y^2}{4}=1$ |
15.已知函数f(x)=sin(2x+$\frac{π}{3}$),则f(x)满足( )
| A. | 最大值为2 | B. | 图象关于点($\frac{π}{3}$,0)对称 | ||
| C. | 图象关于直线x=-$\frac{π}{3}$对称 | D. | 在(0,$\frac{π}{4}$)上为增函数 |