题目内容

已知F1,F2分别是双曲线
x2
4
-
y2
21
=1的左、右焦点,P为双曲线右支上的任意一点,则
|PF1|2
|PF2| 
的最小值为(  )
A、24B、20C、16D、12
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:首先利用双曲线的定义求出关系式,进一步利用均值不等式建立关系式,
|
PF2
|2
|
PF1
|
=
(4+n)2
n
,最后求出结果.
解答: 解:设|PF2|=n,(n≥3)
则:根据双曲线的定义:|PF1|=4+n,
|PF1|2
|PF2| 
=
(4+n)2
n
=n+
16
n
+8≥2
n•
16
n
+8=16,
当且仅当n=4时成立.
|PF1|2
|PF2| 
的最小值为16,
故选:C
点评:本题考查的知识要点:双曲线的定义的应用.双曲线的离心率,均值不等式的应用,属于中等题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网