题目内容
15.已知{an}是公比不等于1的等比数列,Sn为数列{an}的前n项和,且a3=3,S3=9(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}={log_2}\frac{3}{{{a_{2n+3}}}}$,若${c_n}=\frac{4}{{{b_n}{b_{n+1}}}}$,求数列{cn}的前n项和Tn.
分析 (I)利用等比数列的通项公式与求和公式即可得出.
(II)化简利用“裂项求和”方法即可得出.
解答 解:(Ⅰ)设数列{an}的公比为q,q≠1,$\left\{\begin{array}{l}{a_1}{q^2}=3\\ \frac{{{a_1}(1-{q^3})}}{1-q}=9\end{array}\right.$
化为$\left\{\begin{array}{l}{a_1}{q^2}=3\\{a_1}(1+q+{q^2})=9\end{array}\right.$,------------------------------------------------(3分)
解得${a_1}=12,q=-\frac{1}{2}$,
∴${a_n}=12×{(-\frac{1}{2})^{n-1}}$-------------------------------------------(5分)
(Ⅱ)${a_{2n+3}}=12×{(-\frac{1}{2})^{2n+2}}=3×{(\frac{1}{2})^{2n}}$,${b_n}={log_2}\frac{3}{{{a_{2n+3}}}}={log_2}{2^{2n}}=2n$------(8分)
${c_n}=\frac{4}{{{b_n}{b_{n+1}}}}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$-------------------------------------------------------(10分)${c_1}+{c_2}+{c_3}+…+{c_n}=(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+…+(\frac{1}{n}-\frac{1}{n+1})=1-\frac{1}{n+1}=\frac{n}{n+1}$-----(12分)
点评 本题考查了等比数列的通项公式与求和公式、“裂项求和”方法、对数函数的运算性质,考查了推理能力与计算能力,属于中档题.
| A. | y=±x | B. | y=±2x | C. | y=±$\sqrt{3}$x | D. | y=±$\sqrt{2}$x |
| A. | 2$\sqrt{6}$-5 | B. | -5 | C. | 2$\sqrt{6}$+5 | D. | 5 |