题目内容

6.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1(-c,0),F2(c,0),以线段F1F2为直径的圆与双曲线在第二象限的交点为P,若直线PF2与圆E:(x-$\frac{c}{2}$)2+y2=$\frac{{b}^{2}}{16}$相切,则双曲线的渐近线方程是(  )
A.y=±xB.y=±2xC.y=±$\sqrt{3}$xD.y=±$\sqrt{2}$x

分析 求出|PF1|=4r=b,所以|PF2|=2a+b,因此b2+(2a+b)2=4c2,即可求出双曲线的渐近线方程.

解答 解:设切点为M,则EM∥PF1,又$\frac{{F}_{2}E}{{F}_{2}{F}_{1}}$=$\frac{1}{4}$,所以|PF1|=4r=b,所以|PF2|=2a+b,因此b2+(2a+b)2=4c2
所以b=2a,所以渐近线方程为y=±2x.
故选:B.

点评 本题考查双曲线的方程与性质,考查直线与圆的位置关系,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网