题目内容

5.已知α为锐角,且cos(α+$\frac{π}{12}}$)=$\frac{3}{5}$,则sin2α的值为(  )
A.$\frac{{24-7\sqrt{3}}}{50}$B.$\frac{{24+7\sqrt{3}}}{50}$C.$\frac{{24\sqrt{3}-7}}{50}$D.$\frac{{24\sqrt{3}+7}}{50}$

分析 根据同角的三角函数的基本关系,利用三角恒等变换,即可求出sin2α的值.

解答 解:【方法一】α为锐角,且cos(α+$\frac{π}{12}}$)=$\frac{3}{5}$,
∴sin(α+$\frac{π}{12}$)=$\frac{4}{5}$,
∴cos(α+$\frac{π}{4}$)=cos(α+$\frac{π}{12}$+$\frac{π}{6}$)
=$\frac{3}{5}$×$\frac{\sqrt{3}}{2}$-$\frac{4}{5}$×$\frac{1}{2}$
=$\frac{3\sqrt{3}-4}{10}$,
∴sin2α=-cos2(α+$\frac{π}{2}$)
=1-2×${(\frac{3\sqrt{3}-4}{10})}^{2}$
=$\frac{24\sqrt{3}+7}{50}$.
【方法二】α为锐角,且cos(α+$\frac{π}{12}}$)=$\frac{3}{5}$,∴sin(α+$\frac{π}{12}$)=$\frac{4}{5}$,
∴sin(2α+$\frac{π}{6}$)=2sin(α+$\frac{π}{12}$)cos(α+$\frac{π}{12}$)=2×$\frac{4}{5}$×$\frac{3}{5}$=$\frac{24}{25}$,
∴cos(2α+$\frac{π}{6}$)=2cos2(α+$\frac{π}{12}$)-1=2×${(\frac{3}{5})}^{2}$-1=-$\frac{7}{25}$;
∴sin2α=sin[(2α+$\frac{π}{6}$)-$\frac{π}{6}$]
=sin(2α+$\frac{π}{6}$)cos$\frac{π}{6}$-cos(2α+$\frac{π}{6}$)sin$\frac{π}{6}$
=$\frac{24}{25}$×$\frac{\sqrt{3}}{2}$-(-$\frac{7}{25}$)×$\frac{1}{2}$
=$\frac{24\sqrt{3}+7}{50}$.
故选:D.

点评 本题考查了同角的三角函数基本关系与三角恒等变换的应用问题,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网