题目内容

18.在△ABC中,角A,B,C所对的边分别为a,b,c,且$cosA=\frac{1}{4}$,b=2c,则sinC=$\frac{\sqrt{15}}{8}$.

分析 由余弦定理可得:a=2c,a=b.sinA=$\sqrt{1-co{s}^{2}A}$.再利用正弦定理即可得出.

解答 解:$cosA=\frac{1}{4}$,b=2c,
由余弦定理可得:$cosA=\frac{1}{4}$=$\frac{(2c)^{2}+{c}^{2}-{a}^{2}}{2×2c×c}$,解得a=2c.
∴a=b.
sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{15}}{4}$.
∴$\frac{2c}{\frac{\sqrt{15}}{4}}$=$\frac{c}{sinC}$,解得sinC=$\frac{{\sqrt{15}}}{8}$.
故答案为:$\frac{{\sqrt{15}}}{8}$.

点评 本题考查了余弦定理与正弦定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网