题目内容

14.平行六面体ABCD-A1B1C1D1的所有棱长都相等,且∠A1AB=∠A1AD=∠BAD=60°,则对角面B1BDD1是正方形.

分析 根据题意,先判断四边形B1BDD1是平行四边行,再判断平行四边形B1BDD1是菱形,最后判断菱形B1BDD1是正方形.

解答 解:如图所示平行六面体ABCD-A1B1C1D1中,
BB1∥DD1,且BB1=DD1
∴四边形B1BDD1是平行四边行;
又平行六面体的所有棱长都相等,
且∠A1AB=∠A1AD=∠BAD=60°,
∴BD=AB=BB1
∴平行四边形B1BDD1是菱形;
得出直线AA1在平面ABCD内的射影是AC,
且BD⊥AC,
∴AA1⊥BD;
又AA1∥BB1
∴BB1⊥BD,
∴菱形B1BDD1是正方形.
故答案为:正方形.

点评 本题主要考查了平行六面体的结构特征的应用问题,也考查了空间中的平行于垂直的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网