题目内容
有七名同学站成一排照毕业纪念照,其中小明必须站在正中间,并且小李、小张两位同学要站在一起,则不同的站法有( )
| A、192种 | B、120种 |
| C、96种 | D、48种 |
考点:排列、组合及简单计数问题
专题:应用题,排列组合
分析:由于小明必须站正中间,故先安排小明,两边一边三人,不妨令小李、小张在小明左边,求出此种情况下的站法,再乘以2即可得到所有的站法总数,计数时要先安排小李、小张两人,再安排小明左边的第三人,最后余下三人,在小明右侧是一个全排列.
解答:
解:不妨令小李、小张在小明左侧,先排小李、小张两人,有A22种站法,再取一人站左侧有C41×A22种站法,余下三人站右侧,有A33种站法
考虑到小李、小张在右侧的站法,故总的站法总数是2×A22×C41×A22×A33=192
故选:A.
考虑到小李、小张在右侧的站法,故总的站法总数是2×A22×C41×A22×A33=192
故选:A.
点评:本题考查排列、组合的实际应用,解题的关键是理解题中所研究的事件,并正确确定安排的先后顺序,此类排列问题一般是谁最特殊先安排谁,俗称特殊元素优先法.
练习册系列答案
相关题目
(Ⅰ)证明:A1F∥平面ADE;
(Ⅱ)证明:A1F⊥DE.
设M在曲线y=ex+
上,N点在y=
x上,则|MN|的最小值为( )
| 1 |
| ex |
| 3 |
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
定义在R上的偶函数f(x)满足f(x+2)=f(x-2),且f(x)在[-5,-4]上是减函数,又α、β是锐角三角形的两个内角,则( )
| A、f(cosα)<f(cosβ) |
| B、f(sinβ)>f(cosα) |
| C、f(sinα)<f(cosβ) |
| D、f(sinα)<f(sinβ) |