题目内容
15.已知向量$\overrightarrow a$,$\overrightarrow b$满足条件:$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=\sqrt{2}$,且$\overrightarrow a$与$2\overrightarrow b-\overrightarrow a$互相垂直,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{4}$.分析 根据两向量垂直,数量积为0,利用数量积的定义列出方程求出$\overrightarrow{a}$、$\overrightarrow{b}$夹角的大小.
解答 解:向量$\overrightarrow a$,$\overrightarrow b$满足条件:$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=\sqrt{2}$,且$\overrightarrow a$与$2\overrightarrow b-\overrightarrow a$互相垂直,
∴$\overrightarrow{a}$•(2$\overrightarrow{b}$-$\overrightarrow{a}$)=2$\overrightarrow{a}$•$\overrightarrow{b}$-${\overrightarrow{a}}^{2}$=0,
设$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为θ,
则2×|$\overrightarrow{a}$|×|$\overrightarrow{b}$|×cosθ-${|\overrightarrow{a}|}^{2}$=2×2×$\sqrt{2}$×cosθ-22=0,
解得cosθ=$\frac{\sqrt{2}}{2}$,
又θ∈[0,π],
∴θ=$\frac{π}{4}$.
故答案为:$\frac{π}{4}$.
点评 本题主要考查了两个向量垂直的性质以及夹角公式的应用问题,属于综合性题目.
练习册系列答案
相关题目
6.已知集合M={0,1,2,3,4},N={1,3,5}且P=M∪N,则P的元素有( )个.
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
7.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.

表中wi=$\sqrt{x_i}$,$\overline w=\frac{1}{8}\sum_{i=1}^8{w_i}$
(1)若根据散点图用y=c+d$\sqrt{x}$表示年销售量y关于年宣传费x的回归方程,试根据表中数据,求c,d的值;
(2)已知这种产品的年利率z与x、y的关系为z=0.2y-x,根据(1)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:β=$\frac{{\sum_{i=1}^n{({v_i}-\overline v)({u_i}-\overline u)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$α=$\overline v-β\overline u$.
| $\overline x$ | $\overline y$ | $\overline w$ | ${\sum_{i=1}^8{({x_i}-\overline x)}^2}$ | ${\sum_{i=1}^8{({w_i}-\overline w)}^2}$ | $\sum_{i=1}^8{({x_i}-\overline x)}({y_i}-\overline y)$ | $\sum_{i=1}^8{({w_i}-\overline w)}({y_i}-\overline y)$ |
| 46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
(1)若根据散点图用y=c+d$\sqrt{x}$表示年销售量y关于年宣传费x的回归方程,试根据表中数据,求c,d的值;
(2)已知这种产品的年利率z与x、y的关系为z=0.2y-x,根据(1)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:β=$\frac{{\sum_{i=1}^n{({v_i}-\overline v)({u_i}-\overline u)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$α=$\overline v-β\overline u$.
5.
某几何体由圆柱挖掉半个球和一个圆锥所得,三视图中的正视图和侧视图如图所示,求该几何体的表面积( )
| A. | 60π | B. | 75π | C. | 90π | D. | 93π |