题目内容

4.已知平面内有A(-2,1),B(1,4),使$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{CB}$成立的点C坐标为(-1,2).

分析 设C(x,y),由$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{CB}$,列出方程组,能求出C点坐标.

解答 解:平面内有A(-2,1),B(1,4),
设C(x,y),∵$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{CB}$,
∴(x+2,y-1)=($\frac{1-x}{2}$,$\frac{4-y}{2}$),
∴$\left\{\begin{array}{l}{x+2=\frac{1-x}{2}}\\{y-1=\frac{4-y}{2}}\end{array}\right.$,解得x=-1,y=2,
∴C(-1,2).
故答案为:(-1,2).

点评 本题考点的坐标的求法,是基础题,解题时要认真审题,注意平面向量坐标运算法则的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网