题目内容
7.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.| $\overline x$ | $\overline y$ | $\overline w$ | ${\sum_{i=1}^8{({x_i}-\overline x)}^2}$ | ${\sum_{i=1}^8{({w_i}-\overline w)}^2}$ | $\sum_{i=1}^8{({x_i}-\overline x)}({y_i}-\overline y)$ | $\sum_{i=1}^8{({w_i}-\overline w)}({y_i}-\overline y)$ |
| 46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
(1)若根据散点图用y=c+d$\sqrt{x}$表示年销售量y关于年宣传费x的回归方程,试根据表中数据,求c,d的值;
(2)已知这种产品的年利率z与x、y的关系为z=0.2y-x,根据(1)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?
(ii)年宣传费x为何值时,年利润的预报值最大?
附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:β=$\frac{{\sum_{i=1}^n{({v_i}-\overline v)({u_i}-\overline u)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$α=$\overline v-β\overline u$.
分析 (1)根据散点图,即可判断出结论,建立线性回归方程,求出d、c的值;
(2)(i)由(1)计算年销售量y的预报值与利润值;
(ii)根据(Ⅱ)的结果求出年利润z的函数,求出年利润的最大值.
解答 解:(1)由散点图可以判断,y=c+d$\sqrt{x}$适宜作为年销售量y关于年宣传费x的回归方程类型;
令w=$\sqrt{x}$,先建立y关于w的线性回归方程,由于d=$\frac{108.6}{1.6}$=68,
c=y-dw=563-68×6.8=100.6,
所以y关于w的线性回归方程为y=100.6+68w,
因此y关于x的回归方程为y=100.6+68$\sqrt{x}$,
(2)(i)由(1)知,当x=49时,年销售量y的预报值y=100.6+68$\sqrt{x}$=576.6,
年利润z的预报值z=576.6×0.2-49=66.32,
(ii)根据(1)的结果可知,年利润z的预报值z=0.2(100.6+68$\sqrt{x}$)-x=-x+13.6$\sqrt{x}$+20.12,
当$\sqrt{x}$=$\frac{13.6}{2}$=6.8时,年利润的预报值最大,为66.36千元.
点评 本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.
练习册系列答案
相关题目
18.若a、b、c∈R,则下列四个命题中,正确的是( )
| A. | 若a>b,则ac2>bc2 | B. | 若a>b,c>d,则a-c>b-d | ||
| C. | 若a>b,则$\frac{1}{a}<\frac{1}{b}$ | D. | 若a>|b|,则a2>b2 |
12.设α,β是两个不同的平面,m,n是两条不同的直线,给出下列四个论断①m∥n;②α∥β③m⊥α;④n⊥β.以其中三个论断作为条件,余下一个论断作为结论,则一共可以写出真命题的个数为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
16.已知复数z1=3-i,|z2|=2,则|z1+z2|的最大值是( )
| A. | $\sqrt{10}-\sqrt{2}$ | B. | $\sqrt{10}+\sqrt{2}$ | C. | $\sqrt{10}$+2 | D. | $\sqrt{10}-2$ |
17.已知集合A={第一象限角},B={锐角},C={小于90°的角},下面关系正确( )
| A. | A=B=C | B. | A⊆C | C. | A∩C=B | D. | B⊆A∩C |