题目内容
20.$\lim_{n→∞}[{\frac{1}{3}+\frac{1}{8}+…+\frac{1}{{n({n+2})}}}]$=$\frac{3}{4}$.分析 利用裂项求和,再求极限,可得结论.
解答 解:$\lim_{n→∞}[{\frac{1}{3}+\frac{1}{8}+…+\frac{1}{{n({n+2})}}}]$=$\underset{lim}{n→∞}$$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)=$\frac{1}{2}×(1+\frac{1}{2})$=$\frac{3}{4}$,
故答案为$\frac{3}{4}$.
点评 本题考查裂项求和,考查极限知识,正确求和是关键.
练习册系列答案
相关题目
16.设A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则点P的轨迹方程是( )
| A. | (x-1)2+y2=2 | B. | (x-1)2+y2=4 | C. | y2=2x | D. | y2=-2x |
11.设函数$f(x)=\left\{\begin{array}{l}{log}_{\frac{1}{2}}^{(-x)},x<0\\{log}_{2}^{x},x>0\end{array}\right.$,若f(a)>f(-a),则a的范围为( )
| A. | (-1,0)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-∞,-1)∪(1,+∞) | D. | (-∞,-1)∪(0,1) |
12.设α,β是两个不同的平面,m,n是两条不同的直线,给出下列四个论断①m∥n;②α∥β③m⊥α;④n⊥β.以其中三个论断作为条件,余下一个论断作为结论,则一共可以写出真命题的个数为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
10.下列函数在(0,+∞)上是增函数的是( )
| A. | y=3-x | B. | y=-2x | C. | y=log0.1x | D. | y=x${\;}^{\frac{1}{2}}$ |