题目内容

18.已知函数f(x)=$\left\{\begin{array}{l}{lnx,x≥1}\\{{e}^{f(|x|+1)},x<1}\end{array}\right.$,(e为自然对数的底数),则f(e)=1,函数y=f(f(x))-1的零点有3个.(用数字作答)

分析 化简f(x)的解析式,求出f(x)=1的解x0,再令f(x)=x0即可得出函数的零点.

解答 解:f(e)=lne=1,
f(x)=$\left\{\begin{array}{l}{lnx,x≥1}\\{x+1,0≤x<1}\\{1-x,x<0}\end{array}\right.$,令f(x)=1得x=e或x=0,
∵f(f(x))-1=0,
∴f(x)=e或f(x)=0,
x=ee或x=1-e或x=1,
故y=f(f(x))-1有三个零点.
故答案为:1,3.

点评 本题考查了函数零点的个数判断,对数的运算性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网