题目内容
7.已知A(1,2),B(-2,1),O为坐标原点,若直线l:ax+by=2与△ABO所围成区域(包含边界)没有公共点,则a-b的取值范围为[-2,+∞).分析 根据所给的三个点的坐标和直线与两条直线都有公共点,得到关于a,b的不等式组,根据不等式组画出可行域,求出目标函数的最小值.
解答
解:A(1,2),B(-2,1),O为坐标原点,若直线l:ax+by=2与△ABO所围成区域(包含边界)没有公共点,
得不等式组$\left\{\begin{array}{l}{a+2b<2}\\{-2a+b<2}\end{array}\right.$,
令z=a-b,
画出不等式组表示的平面区域,判断知,z=a-b在A取得最小值,
由$\left\{\begin{array}{l}{a+b=2}\\{-2+b=2}\end{array}\right.$解得A(0,2),
a-b的最小值为:-2.
a-b的取值范围是[-2,+∞).
故答案为:[-2,+∞).
点评 本题考查线性规划的应用,本题解题的关键是写出约束条件,表示出目标函数,画出可行域,得到最优解,本题是一个中档题.
练习册系列答案
相关题目
11.某产品的广告费用x与销售额y的统计数据如表:
根据上表可得回归方程$\hat y=9.4x+9.1$,据此模型预报广告费用为6万元时,销售额为( )
| 广告费用x(万元) | 4 | 2 | 3 | 5 |
| 销售额y(万元) | 49 | 26 | 39 | 54 |
| A. | 72.0万元 | B. | 67.7万元 | C. | 65.5万元 | D. | 63.6万元 |
15.已知点O、N、P在三角形ABC所在平面内,且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,$\overrightarrow{PA}•\overrightarrow{PB}$=$\overrightarrow{PB}•\overrightarrow{PC}$=$\overrightarrow{PC}•\overrightarrow{PA}$,则点O、N、P依次是三角形ABC的( )
| A. | 重心、外心、垂心 | B. | 重心、外心、内心 | C. | 外心、重心、垂心 | D. | 外心、重心、内心 |
2.如图给出的是计算$1+\frac{1}{3}+\frac{1}{5}++\frac{1}{119}$的值的一个程序框图,其中判断框内可以填入的条件是( )

| A. | i≤119? | B. | i≥119? | C. | i≤60? | D. | i≥60? |
17.已知f(x)=$\frac{a}{2}$-$\frac{3}{{2}^{x}+1}$是R上的奇函数,则f(a)的值为( )
| A. | $\frac{7}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{5}$ | D. | $\frac{2}{3}$ |