题目内容

16.在直角坐标系xoy中,直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),曲线C的参数方程为$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}+cosα\\ y=\frac{{\sqrt{2}}}{2}+sinα\end{array}\right.$(α为参数),且直线l与曲线C交于A,B两点,求AB的长.

分析 直线l的参数方程消去参数t得直线l的直角坐标方程为y=$\sqrt{3}x+\frac{\sqrt{2}}{2}$,曲线C的参数方程消去参数,得曲线C的直角坐标方程为(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{\sqrt{2}}{2}$)2=1,先求出圆心($\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$)到直线l的距离,再利用勾股定理能求出AB.

解答 解:∵直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),
∴消去参数t得直线l的直角坐标方程为y=$\sqrt{3}x+\frac{\sqrt{2}}{2}$,
∵曲线C的参数方程为$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}+cosα\\ y=\frac{{\sqrt{2}}}{2}+sinα\end{array}\right.$(α为参数),
∴曲线C的直角坐标方程为(x-$\frac{\sqrt{2}}{2}$)2+(y-$\frac{\sqrt{2}}{2}$)2=1,
∴圆心($\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$)到直线l的距离d=$\frac{\sqrt{6}}{4}$,
∴AB=2$\sqrt{1-(\frac{\sqrt{6}}{4})^{2}}$=$\frac{\sqrt{10}}{2}$.

点评 本题考查直线被圆所截弦长的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网