题目内容

19.在${(\frac{a}{x}-\sqrt{\frac{x}{2}})}^{9}$的二项式展开式中,x3的系数是$\frac{9}{4}$,则实数a=4.

分析 利用二项式展开式的通项公式即可得出.

解答 解:在${(\frac{a}{x}-\sqrt{\frac{x}{2}})}^{9}$的二项式展开式中,通项公式Tr+1=${∁}_{9}^{r}$$(\frac{a}{x})^{9-r}(-\sqrt{\frac{x}{2}})^{r}$=${a}^{9-r}(-\sqrt{\frac{1}{2}})^{r}$${∁}_{9}^{r}$${x}^{\frac{3r}{2}-9}$,
令$\frac{3r}{2}$-9=3,解得r=8.
∴${a}^{9-8}(-\sqrt{\frac{1}{2}})^{8}$${∁}_{9}^{8}$=$\frac{9}{4}$,解得a=4.
故答案为:4.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网