题目内容
设a、b、m∈R+,且,求证:a>b.
证明:由<0.因为a、b、m∈R+,所以b-a<0,即b<a.
如图,四棱锥P-ABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PB=PD=2,PA=.
(1)证明:PC⊥BD;
(2)若E为PA的中点,求三棱锥P-BCE的体积.
已知函数f(x)=2sin x(sin x+cos x).
(1)求函数f(x)的最小正周期和最大值;
(2)在给出的平面直角坐标系中,画出函数y=f(x)在区间上的图象.
圆x2+y2-ax+2=0与直线l相切于点A(3,1),则直线l的方程为________.
已知双曲线=1(a>0,b>0)的右焦点为F(c,0).
(1)若双曲线的一条渐近线方程为y=x且c=2,求双曲线的方程;
(2)以原点O为圆心,c为半径作圆,该圆与双曲线在第一象限的交点为A,过A作圆的切线,斜率为-,求双曲线的离心率.
已知x、y、z均为正数,求证:.
已知a、b、m、n均为正数,且a+b=1,mn=2,求(am+bn)(bm+an)的最小值.
已知a,b为正实数.
(1)求证:≥a+b;
(2)利用(1)的结论求函数y= (0<x<1)的最小值.
已知矩阵M=,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P′(-4,0),求实数a的值;并求矩阵M的特征值及其对应的特征向量.