题目内容
17.分析 如图所示,取BC的中点D,连接OD,AD.则$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),OD⊥BC,即$\overrightarrow{OD}$•$\overrightarrow{BC}$=0.于是$\overrightarrow{AO}$•$\overrightarrow{BC}$=($\overrightarrow{AD}$+$\overrightarrow{DO}$)•$\overrightarrow{BC}$=$\overrightarrow{AD}$•$\overrightarrow{BC}$+$\overrightarrow{DO}$•$\overrightarrow{BC}$=$\overrightarrow{AD}$•$\overrightarrow{BC}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$),化简代入即可得出.
解答 解:由题意,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,则O是外心.
如图所示,
取BC的中点D,连接OD,AD.
则$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),OD⊥BC,即$\overrightarrow{OD}$•$\overrightarrow{BC}$=0.
∴$\overrightarrow{AO}$•$\overrightarrow{BC}$=($\overrightarrow{AD}$+$\overrightarrow{DO}$)•$\overrightarrow{BC}$=$\overrightarrow{AD}$•$\overrightarrow{BC}$+$\overrightarrow{DO}$•$\overrightarrow{BC}$=$\overrightarrow{AD}$•$\overrightarrow{BC}$
=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=$\frac{1}{2}$($\overrightarrow{AC}$2-$\overrightarrow{AB}$2)=$\frac{1}{2}$(81-25)=28.
故答案为:28.
点评 本题考查了数量积运算性质、向量平行四边形法则、垂经定理、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.
| A. | [0,1] | B. | (0,1] | C. | (0,1) | D. | (-1,0) |