题目内容

3.设点A(x,y)在区域$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$上,点B(y,-x),设向量$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,则点C构成的几何图形的面积是(  )
A.3B.2C.$\frac{3}{2}$D.1

分析 由已知向量等式可得$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x+y,y-x),设C(m,n),则$\left\{\begin{array}{l}{x=\frac{m-n}{2}}\\{y=\frac{m+n}{2}}\end{array}\right.$.代入$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,得$\left\{\begin{array}{l}{m-n≥2}\\{m+n≥2}\\{m≤3}\end{array}\right.$,作出可行域,利用三角形面积公式求得答案.

解答 解:∵A(x,y),B(y,-x),
∴向量$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x+y,y-x),
设C(m,n),则$\left\{\begin{array}{l}{x+y=m}\\{y-x=n}\end{array}\right.$,即$\left\{\begin{array}{l}{x=\frac{m-n}{2}}\\{y=\frac{m+n}{2}}\end{array}\right.$.
代入$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,得$\left\{\begin{array}{l}{m-n≥2}\\{m+n≥2}\\{m≤3}\end{array}\right.$,
作出可行域如图:

联立$\left\{\begin{array}{l}{m=3}\\{m+n=2}\end{array}\right.$,解得C(3,-1),
联立$\left\{\begin{array}{l}{m=3}\\{m-n=2}\end{array}\right.$,解得B(3,1),
又A(2,0),
∴△ABC的面积为S=$\frac{1}{2}×2×1=1$.
故选:D.

点评 本题考查简单的线性规划,考查了数学转化思想方法和数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网