题目内容
3.设点A(x,y)在区域$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$上,点B(y,-x),设向量$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,则点C构成的几何图形的面积是( )| A. | 3 | B. | 2 | C. | $\frac{3}{2}$ | D. | 1 |
分析 由已知向量等式可得$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x+y,y-x),设C(m,n),则$\left\{\begin{array}{l}{x=\frac{m-n}{2}}\\{y=\frac{m+n}{2}}\end{array}\right.$.代入$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,得$\left\{\begin{array}{l}{m-n≥2}\\{m+n≥2}\\{m≤3}\end{array}\right.$,作出可行域,利用三角形面积公式求得答案.
解答 解:∵A(x,y),B(y,-x),
∴向量$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$=(x+y,y-x),
设C(m,n),则$\left\{\begin{array}{l}{x+y=m}\\{y-x=n}\end{array}\right.$,即$\left\{\begin{array}{l}{x=\frac{m-n}{2}}\\{y=\frac{m+n}{2}}\end{array}\right.$.
代入$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,得$\left\{\begin{array}{l}{m-n≥2}\\{m+n≥2}\\{m≤3}\end{array}\right.$,
作出可行域如图:![]()
联立$\left\{\begin{array}{l}{m=3}\\{m+n=2}\end{array}\right.$,解得C(3,-1),
联立$\left\{\begin{array}{l}{m=3}\\{m-n=2}\end{array}\right.$,解得B(3,1),
又A(2,0),
∴△ABC的面积为S=$\frac{1}{2}×2×1=1$.
故选:D.
点评 本题考查简单的线性规划,考查了数学转化思想方法和数形结合的解题思想方法,是中档题.
| A. | a≥0且b≥0 | B. | a≤0且b≤0 | C. | a<0且b<0 | D. | a<0或b<0 |
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
| A. | {-1,3} | B. | {(-1,1),(3,9)} | C. | {1,-3} | D. | ∅ |
| A. | ?x>0,2x<log2x | B. | ?x0>0,${2^{x_0}}≤{log_2}{x_0}$ | ||
| C. | ?x0>0,${2^{x_0}}<{log_2}{x_0}$ | D. | ?x0>0,${2^{x_0}}≥{log_2}{x_0}$ |
| A. | (1,2) | B. | (1,$\frac{3}{2}$] | C. | [$\frac{3}{2}$,2) | D. | ($\frac{3}{2}$,2) |