题目内容
15.已知函数$f(x)=\left\{\begin{array}{l}(2-a)x+1,x<1\\{a^x},x≥1\end{array}\right.$是(-∞,+∞)上的增函数,那么a的取值范围是( )| A. | (1,2) | B. | (1,$\frac{3}{2}$] | C. | [$\frac{3}{2}$,2) | D. | ($\frac{3}{2}$,2) |
分析 利用题意,首先考查函数在所给的两段上面都单调递增,然后考查函数在x=1处的函数值关系,据此即可求得最终结果.
解答 解:对于分段函数:
一次函数单调递增,则:2-a>0,∴a<2,①
指数函数单调递增,则:a>1,②
且当x=1时,应满足:(2-a)×1+1≤a1,∴$2-a+1≤a,a≥\frac{3}{2}$,③
结合①②③可得,实数a的取值范围是$[\frac{3}{2},2)$.
故选:C.
点评 本题考查了一次函数的单调性,指数函数的单调性,分段函数的单调性等,重点考查学生对基础概念的理解和计算能力,属于中等题.
练习册系列答案
相关题目
6.在直角坐标系中,若不等式组$\left\{\begin{array}{l}{y≥0}\\{y≤x}\\{y≤k(x-1)-1}\end{array}\right.$表示一个三角形区域,则实数k的取值范围是( )
| A. | (-∞,-1) | B. | (-1,2) | C. | (-∞,-1)∪(2,+∞) | D. | (2,+∞) |
3.设点A(x,y)在区域$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$上,点B(y,-x),设向量$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,则点C构成的几何图形的面积是( )
| A. | 3 | B. | 2 | C. | $\frac{3}{2}$ | D. | 1 |
10.在${(\frac{x}{2}-\frac{1}{{\root{3}{x}}})^n}$的二项展开式中,只有第5项的二项式系数最大,则此展开式中各项系数绝对值之和为( )
| A. | ${(\frac{1}{2})^9}$ | B. | ${(\frac{3}{2})^9}$ | C. | ${(\frac{1}{2})^8}$ | D. | ${(\frac{3}{2})^8}$ |
7.四棱锥S-ABCD的底面ABCD是正方形,各侧棱长与底面的边长均相等,M为SA的中点,则直线BM与SC所成的角的余弦值为( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{\sqrt{2}}{4}$ |