题目内容
7.对于集合A、B,“A≠B”是“A∩B?A∪B”的( )| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 既非充分也非必要条件 |
分析 利用集合之间的关系及其运算性质即可得出.
解答 解:∵A∩B⊆A⊆A∪B,
∴A≠B”是“A∩B?A∪B”的充要条件,
故选:C.
点评 本题考查了集合之间的关系及其运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
17.过抛物线y2=2px(p>0)的焦点F且倾斜角为α的直线交抛物线于A、B两点,若S△ADF=4S△BOF,O为坐标原点,则sinα=( )
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
12.当x,y满足条件$\left\{\begin{array}{l}{x≥y}\\{y≥0}\\{2x+y-3≥0}\end{array}\right.$时,目标函数z=x+3y的最小值是( )
| A. | 0 | B. | 1.5 | C. | 4 | D. | 9 |
17.$若log_a^{\;}\frac{2}{3}<1,(a>0且a≠1)$,则a的取值范围是( )
| A. | ($\frac{2}{3}$,1) | B. | (0,$\frac{2}{3}$)∪(1,+∞) | C. | (1,+∞) | D. | (0,$\frac{2}{3}$)∪($\frac{2}{3}$,+∞) |