题目内容
求证:PA∥平面EDB.
考点:直线与平面平行的判定
专题:空间位置关系与距离
分析:由正方形的性质结合题意证出EO为△PBD的中位线,从而得到EO∥PA,利用线面平行的判定定理,即可证出PA∥平面EBD
解答:
证明:连接AC,与BD交于O,连接EO,因为底面ABCD为正方形,得O是AC的中点,
E是PC的中点,所以OE是三角形PAC的中位线,得EO∥PA,
又EO?平面EDB,PA?平面EDB
∴PA∥平面EDB
E是PC的中点,所以OE是三角形PAC的中位线,得EO∥PA,
又EO?平面EDB,PA?平面EDB
∴PA∥平面EDB
点评:本题在特殊的四棱锥中证明线面平行,着重考查了空间的平行的判定与证明的知识,属于中档题.
练习册系列答案
相关题目
若x0是函数f(x)=(
)x-x
的零点,则x0属于区间( )
| 1 |
| 2 |
| 1 |
| 3 |
| A、(-1,0) |
| B、(0,1) |
| C、(1,2) |
| D、(2,3) |
在空间四面体SABC中,SC⊥AB,AC⊥SC,且△ABC是锐角三角形,那么必有( )

| A、平面SAC⊥平面SCB |
| B、平面SAB⊥平面ABC |
| C、平面SCB⊥平面ABC |
| D、平面SAC⊥平面SAB |
已知直线l⊥平面α,直线m⊆平面β,给出下列命题,其中正确的是( )
①α∥β⇒l⊥m
②α⊥β⇒l∥m
③l∥m⇒α⊥β
④l⊥m⇒α∥β
①α∥β⇒l⊥m
②α⊥β⇒l∥m
③l∥m⇒α⊥β
④l⊥m⇒α∥β
| A、②④ | B、②③④ |
| C、①③ | D、①②③ |