题目内容

已知椭圆E:
x2
4
+y2=1的短轴端点分别为A,B(如图).直线AM,BM分别与椭圆E交于C,D两点,其中点满足m≠0,且m≠±
3

(Ⅰ)若AM⊥BM,求m的值;
(Ⅱ)证明:CD所在直线与y轴交点的位置与m无关.
考点:直线与圆锥曲线的综合问题
专题:等差数列与等比数列
分析:(Ⅰ)由
AM
=(m,-
1
2
),
BM
=(m,
3
2
)
,AM⊥BM,能求出m的值.
(Ⅱ)直线AM的方程为y=-
1
2m
x+1
,直线BM的方程为y=
3
2m
x-1
,由
x2
4
+y2=1
y=-
1
2m
x+1
,得C(
4m
m2+1
m2-1
m2+1
),由
x2
4
+y2=1
y=
3
2m
x-1
,得D(
12m
m2+9
9-m2
m2+9
),由此能证明CD与y轴交点的位置与m无关.
解答: (Ⅰ)解:∵A(0,1),B(0,-1),M(m,
1
2
),
AM
=(m,-
1
2
),
BM
=(m,
3
2
)
.…(2分)
又AM⊥BM,∴
AM
BM
=0,
m2=
3
4
,解得m=±
3
2
.…(5分)
(Ⅱ)证明:直线AM的斜率为k1=-
1
2m

直线BM斜率为k2=
3
2m

∴直线AM的方程为y=-
1
2m
x+1
,直线BM的方程为y=
3
2m
x-1
.…(6分)
x2
4
+y2=1
y=-
1
2m
x+1
,得(m2+1)x2-4mx=0,∴x1=0,x2=
4m
m2+1

∴C(
4m
m2+1
m2-1
m2+1
),…(8分)
x2
4
+y2=1
y=
3
2m
x-1
,得(m2+9)x2-12mx=0,
∴x1=0,x2=
12m
m2+9
,∴D(
12m
m2+9
9-m2
m2+9
),…(10分)
由题意知m≠0,m2≠3,.
∴直线CD的斜率k=
m2-1
1+m2
-
9-m2
m2+9
4m
1+m2
-
12m
9+m2
=
(m2+3)(m2-3)
-4m(m2-3)
=-
m2+3
4m

∴直线CD的方程为y-
m2-1
m2+1
=-
m2+3
4m
(x-
4m
m2+1
)
.…(12分)
令x=0,得y=2,∴CD与y轴交点的位置与m无关.…(13分)
点评:本小题主要考查椭圆标准方程与性质、直线与圆锥曲线位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、特殊与一般思想等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网