题目内容

2.如图,三棱柱ABF-DCE中,∠ABC=120°,BC=2CD,AD=AF,AF⊥平面ABCD.
(Ⅰ)求证:BD⊥EC;
(Ⅱ)若AB=1,求四棱锥B-ADEF的体积.

分析 (Ⅰ)证明ED⊥BD,BD⊥CD.推出BD⊥平面ECD.然后证明BD⊥EC;
(Ⅱ)作BH⊥AD于H,求出高BH=$\frac{\sqrt{3}}{2}$,然后求解几何体的体积.

解答 (Ⅰ)证明:三棱柱ABF-DCE中,AF⊥平面ABCD.∴DE∥AF,ED⊥平面ABCD,
∵BD?平面ABCD,∴ED⊥BD,
又ABCD是平行四边形,∠ABC=120°,故∠BCD=60°.
∵BC=2CD,故∠BDC=90°.故BD⊥CD.
∵ED∩CD=D,∴BD⊥平面ECD.
∵EC?平面ECD,
∴BD⊥EC;
(Ⅱ)解:由BC=2CD,可得AD=2AB,∵AB=1,∴AD=2,作BH⊥AD于H,
∵AF⊥平面ABCD,∴BH⊥平面ADEF,又∠ABC=120°,
∴BH=$\frac{\sqrt{3}}{2}$,
∴${V}_{B-ADEF}=\frac{1}{3}×(2×2)×\frac{\sqrt{3}}{2}=\frac{2\sqrt{3}}{3}$.

点评 本题考查直线与平面垂直的判定定理以及性质定理的应用,几何体四棱锥B-ADEF的体积的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网