题目内容
17.小明忘记了微信登录密码的后两位,只记得最后一位是字母A,a,B,b中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是$\frac{1}{12}$.分析 列举出满足条件的所有事件的可能,从而求出概率值即可.
解答 解:由题意得,开机密码的可能有:
(4,A),(4,a),(4,B),(4,b),
(5,A),(5,a),(5,B),(5,b),
(6,A),(6,a),(6,B),(6,b),共12种可能,
故小明输入一次密码能够成功登陆的概率是$\frac{1}{12}$,
故答案为:$\frac{1}{12}$.
点评 本题考查了古典概型问题,列举出满足条件的所有事件的可能即可.
练习册系列答案
相关题目
8.某种新产品投放市场一段时间后,经过调研获得了时间x(天数)与销售单价y(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图).
表中wi=$\frac{1}{{x}_{i}}$,$\overline{w}$=$\frac{1}{10}$$\sum_{i=1}^{10}{w}_{i}$.
(Ⅰ)根据散点图判断,$\widehat{y}$=$\widehat{a}$+$\widehat{b}$x与$\widehat{y}$=$\widehat{c}$+$\frac{\widehat{d}}{x}$哪一个更适宜作价格y关于时间x的回归方程类型?(不必说明理由)
(Ⅱ)根据判断结果和表中数据,建立y关于x的回归方程;
(Ⅲ)若该产品的日销售量g(x)(件)与时间x的函数关系为g(x)=$\frac{-100}{x}$+120(x∈N*),求该产品投放市场第几天的销售额最高?最高为多少元?
附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\widehat{β}$=$\frac{\sum_{i=1}^{n}({v}_{i}-\overline{v})({u}_{i}-\overline{u})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.
| $\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{10}({x}_{i}-\overline{x})^{2}$ | $\sum_{i=1}^{10}({w}_{i}-\overline{w})^{2}$ | $\sum_{i=1}^{10}({x}_{i}-\overline{x})({y}_{i}-\overline{y})$ | $\sum_{i=1}^{10}({w}_{i}-\overline{w})({y}_{i}-\overline{y})$ |
| 1.63 | 37.8 | 0.89 | 5.15 | 0.92 | -20.6 | 18.40 |
(Ⅱ)根据判断结果和表中数据,建立y关于x的回归方程;
(Ⅲ)若该产品的日销售量g(x)(件)与时间x的函数关系为g(x)=$\frac{-100}{x}$+120(x∈N*),求该产品投放市场第几天的销售额最高?最高为多少元?
附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\widehat{β}$=$\frac{\sum_{i=1}^{n}({v}_{i}-\overline{v})({u}_{i}-\overline{u})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.
5.中心在坐标原点的双曲线C的两条渐近线与圆(x-2)2+y2=3相切,则双曲线的离心率为( )
| A. | 2 | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | 2或$\frac{2\sqrt{3}}{3}$ |
12.已知x∈($\frac{π}{2}$,π),tanx=-$\frac{4}{3}$,则cos(-x-$\frac{π}{2}$)等于( )
| A. | $\frac{3}{5}$ | B. | -$\frac{3}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
9.将函数f(x)=2$\sqrt{3}$cos2x-2sinxcosx-$\sqrt{3}$的图象向左平移t(t>0)个单位,所得图象对应的函数为奇函数,则t的最小值为( )
| A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{π}{6}$ |
6.
某三棱锥的三视图如图所示,则该三棱锥的各个侧面中最大的侧面的面积为( )
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{2}$ |