题目内容
已知数列{an}的各项均大于1,前n项和Sn满足2Sn=
+n-1.
(Ⅰ)求a1及数列{an}的通项公式;
(Ⅱ)记bn=
,求证:b1+b2+…+bn<
.
| a | 2 n |
(Ⅰ)求a1及数列{an}的通项公式;
(Ⅱ)记bn=
| 1 | ||
|
| 3 |
| 4 |
考点:数列与不等式的综合
专题:等差数列与等比数列
分析:(Ⅰ)n=1时,由已知条件推导出a1=2,当n≥2时,2Sn=
+n-1,2Sn-1=
+n-2,两式相减得(an-an-1-1)(an+an-1-1)=0,由此求出an=n+1.
(Ⅱ)bn=
=
(
-
),由此利用裂项求和法能证明b1+b2+…+bn<
.
| a | 2 n |
| a | 2 n-1 |
(Ⅱ)bn=
| 1 |
| n2+2n |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| 3 |
| 4 |
解答:
(Ⅰ)解:n=1时,2S1=
,
∵a1>1,∴a1=2…(1分)
当n≥2时,2Sn=
+n-1①,
2Sn-1=
+n-2②
两式相减得2Sn-2Sn=
-
+1,
∴2an=
-
+1…(4分)
整理得(an-1)2=
,
∴(an-an-1-1)(an+an-1-1)=0,
∵an>1,∴an+an-1-1≠0
∴an-an-1-1=0(n≥2),…(6分)
∴{an}是首项和公差均为1的等差数列,
∴an=n+1…(7分)
(Ⅱ)证明:∵an=n+1,
∴bn=
=
(
-
)…(9分)
故b1+b2+…+bn=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]…(11分)
=
(1+
-
-
)<
.
∴b1+b2+…+bn<
.…(14分)
| a | 2 1 |
∵a1>1,∴a1=2…(1分)
当n≥2时,2Sn=
| a | 2 n |
2Sn-1=
| a | 2 n-1 |
两式相减得2Sn-2Sn=
| a | 2 n |
| a | 2 n-1 |
∴2an=
| a | 2 n |
| a | 2 n-1 |
整理得(an-1)2=
| a | 2 n-1 |
∴(an-an-1-1)(an+an-1-1)=0,
∵an>1,∴an+an-1-1≠0
∴an-an-1-1=0(n≥2),…(6分)
∴{an}是首项和公差均为1的等差数列,
∴an=n+1…(7分)
(Ⅱ)证明:∵an=n+1,
∴bn=
| 1 |
| n2+2n |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
故b1+b2+…+bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
∴b1+b2+…+bn<
| 3 |
| 4 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
数列2,5,8,11,…,则23是这个数列的( )
| A、第5项 | B、第6项 |
| C、第7项 | D、第8项 |