题目内容

14.在直三棱柱ABC-A1B1C1中,AB=AC=1,AA1=$\sqrt{2}$,且D为BC中点.
(1)求证:A1C∥平面AB1D;
(2)设N为棱CC1的中点,且满足AB⊥AC,求证:平面AB1D⊥平面ABN.

分析 (1)连结A1B,AB1,交于点O,连结OD,推导出OD∥A1C,由此能证明A1C∥平面AB1D.
(2)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能证明平面AB1D⊥平面ABN.

解答 证明:(1)连结A1B,AB1,交于点O,连结OD,
∵直三棱柱ABC-A1B1C1中,ABB1A1是矩形,∴O是A1B中点,
∵D是BC中点,∴OD∥A1C,
∵A1C?平面AB1D,OD?平面AB1D,
∴A1C∥平面AB1D.
(2)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,
则A(0,0,0),B(1,0,0),C(0,1,0),D($\frac{1}{2},\frac{1}{2}$,0),N(0,1,$\frac{\sqrt{2}}{2}$),
B1(1,0,$\sqrt{2}$),
$\overrightarrow{A{B}_{1}}$=(1,0,$\sqrt{2}$),$\overrightarrow{AD}$=($\frac{1}{2},\frac{1}{2}$,0),
$\overrightarrow{AB}$=(1,0,0),$\overrightarrow{AN}$=(0,1,$\frac{\sqrt{2}}{2}$),
设平面AB1D的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=x+\sqrt{2}z=0}\\{\overrightarrow{n}•\overrightarrow{AD}=\frac{1}{2}x+\frac{1}{2}y=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}=(-\sqrt{2},\sqrt{2},1)$,
设平面ABN的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=a=0}\\{\overrightarrow{m}•\overrightarrow{AN}=b+\frac{\sqrt{2}}{2}c=0}\end{array}\right.$,取b=$\sqrt{2}$,得$\overrightarrow{m}$=(0,$\sqrt{2}$,-2),
∵$\overrightarrow{m}•\overrightarrow{n}$=0+2-2=0,
∴平面AB1D⊥平面ABN.

点评 本题考查线面平行的证明,考查面面垂直的证明,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网