题目内容

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>c)的离心率为
2
2
,且经过点P(1,
2
2

(Ⅰ)求椭圆E的方程;
(Ⅱ)设直线x=my+1交椭圆E于A,B两点,射线OA,OB分别交直线l:x=2于M,N,记△OAB,△OMN的面积分别为S1,S2,λ=
S2
S1
,当m∈[
1
2
2
2
]时,求λ的取值范围.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由已知条件推导出
1
a2
+
1
2b2
=1
c
a
=
2
2
c2=a2-b2
,由此能求出椭圆E的方程.
(Ⅱ)设A(my1+1,y1),B(my2+1,y2),M(xM,yM),N(xN,yN),OA的方程为y=
y1
my1+1
x
,OB的方程为y=
y2
my2+1
x
,由此求出|MN|=|
2(y1-y2)
m2y1y2+m(y1+y2)+1
|,由
x=my+1
x2
2
+y2=1
,得|y1-y2|=
2
2
m2+1
m2+2
,从而得到|MN|=
2
2
m2+1
|m2-1|
,|AB|=
1+m2
|y1-y2|=
2
2
(m2+1)
m2+2
,由此能求出λ的取值范围.
解答: 解:(Ⅰ)∵椭圆E:
x2
a2
+
y2
b2
=1(a>b>c)的离心率为
2
2
,且经过点P(1,
2
2
),
1
a2
+
1
2b2
=1
c
a
=
2
2
c2=a2-b2
,解得
a2=2
b=c=1

∴椭圆E的方程为
x2
2
+y2=1

(Ⅱ)设A(my1+1,y1),B(my2+1,y2),M(xM,yM),N(xN,yN),
∴OA的方程为y=
y1
my1+1
x
,OB的方程为y=
y2
my2+1
x

x-2=0
y=
y1
my1+1
,解得yM=
2y1
my1+1

同理求得yN=
2y2
my2+1

∴|MN|=|yM-yN|=|
2(y1-y2)
m2y1y2+m(y1+y2)+1
|,①
x=my+1
x2
2
+y2=1
,得(m2+2)y2+2my-1=0,
∴△=4m2+4(m2+2)>0,
y1+y2=-
2m
m2+2
,y1y2=-
1
m2+2
,|y1-y2|=
2
2
m2+1
m2+2
,②
将②代入①,整理,得:
|MN|=
2
2
m2+1
|m2-1|
,又|AB|=
1+m2
|y1-y2|=
2
2
(m2+1)
m2+2

设点O到直线AB,l的距离分别为d1,d2
d1=
1
m2+1
,d2=2,
S1=
1
2
|AB|d1=
2
m2+1
m2+2

S2=
1
2
|MN|d2=
2
2
m2+1
|m2-1|

∴λ=
S2
S1
=2•|
m2+2
m2-1
|=2|1+
3
m2-1
|,
∵m∈[
1
2
2
2
],∴λ∈[6,10],
∴λ的取值范围是[6,10].
点评:本题考查椭圆方程的求法,考查实数的取值范围的求法,解题时要认真审题,注意函数与方程思想、等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网