题目内容
已知数列{an}的前n项和为Sn,a1=1,Sn与-3Sn+1的等差中项是-
(n∈N*).
(1)数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn.
| 3 |
| 2 |
(1)数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn.
考点:数列的求和,等差数列的前n项和
专题:等差数列与等比数列
分析:(1)根据等差中项的性质列出Sn-3Sn+1=-3,再得当n>1时,Sn-1-3Sn=-3,两式相减后得到数列{an}的递推关系,再利用待定系数法构造新的等比数列,利用等比数列的通项公式求出an;
(2)把an代入bn=nan化简后,再由分组求和法、错位相减法求出数列{bn}的前n项和Tn.
(2)把an代入bn=nan化简后,再由分组求和法、错位相减法求出数列{bn}的前n项和Tn.
解答:
解:∵Sn与-3Sn+1的等差中项是-
,
∴Sn-3Sn+1=-3,
当n>1时,Sn-1-3Sn=-3,两式相减得,
an-3an+1=-3,即an=3an+1-3,
设an+k=3(an+1+k),则an=3an+1+2k,
∴k=-
,
∴an-
=3(an+1-
),即
=
,
又a1=1,∴a1-
=-
,
∴数列{an-
}是以-
为首项,
为公比的等比数列,
则an-
=-
×
,
即an=-
×
+
;
(2)令bn=n•an得,则bn=-
×
+
•n,
∴Tn=-
(1×
+2×
+3×
+…+n×
)+
(1+2+3+…+n)
=-
(1×
+2×
+3×
+…+n×
)+
,
设S=-
(1×
+2×
+3×
+…+n×
),
∴
S=-
(1×
+2×
+3×
+…+n×
)
两式相减得,
S=-
(1+
+
+…+
-n×
)
=-
(
-n×
)=-
+
,
∴S=-
+
,
故Tn=-
+
+
.
| 3 |
| 2 |
∴Sn-3Sn+1=-3,
当n>1时,Sn-1-3Sn=-3,两式相减得,
an-3an+1=-3,即an=3an+1-3,
设an+k=3(an+1+k),则an=3an+1+2k,
∴k=-
| 3 |
| 2 |
∴an-
| 3 |
| 2 |
| 3 |
| 2 |
an+1-
| ||
an-
|
| 1 |
| 3 |
又a1=1,∴a1-
| 3 |
| 2 |
| 1 |
| 2 |
∴数列{an-
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
则an-
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3n-1 |
即an=-
| 1 |
| 2 |
| 1 |
| 3n-1 |
| 3 |
| 2 |
(2)令bn=n•an得,则bn=-
| n |
| 2 |
| 1 |
| 3n-1 |
| 3 |
| 2 |
∴Tn=-
| 1 |
| 2 |
| 1 |
| 30 |
| 1 |
| 31 |
| 1 |
| 32 |
| 1 |
| 3n-1 |
| 3 |
| 2 |
=-
| 1 |
| 2 |
| 1 |
| 30 |
| 1 |
| 31 |
| 1 |
| 32 |
| 1 |
| 3n-1 |
| 3n(n+1) |
| 4 |
设S=-
| 1 |
| 2 |
| 1 |
| 30 |
| 1 |
| 31 |
| 1 |
| 32 |
| 1 |
| 3n-1 |
∴
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 31 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
两式相减得,
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 31 |
| 1 |
| 32 |
| 1 |
| 3n-1 |
| 1 |
| 3n |
=-
| 1 |
| 2 |
1-
| ||
1-
|
| 1 |
| 3n |
| 3 |
| 4 |
| 2n+3 |
| 4•3n |
∴S=-
| 9 |
| 8 |
| 6n+9 |
| 8•3n |
故Tn=-
| 9 |
| 8 |
| 6n+9 |
| 8•3n |
| 3n(n+1) |
| 4 |
点评:本题考查等差、等比数列的通项公式和前n项和公式,利用待定系数法构造新的等比数列求出通项公式,错位相减法、分组求和法求数列的和,确定数列的通项公式是关键,考查了运算化简能力.
练习册系列答案
相关题目