题目内容
等差数列{an}中,a1=1,a3=7.
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)设bn=an•2 an,求数列{bn}的前n项和Sn.
(Ⅰ)求数列{an}的通项公式.
(Ⅱ)设bn=an•2 an,求数列{bn}的前n项和Sn.
考点:数列的求和,等差数列的前n项和
专题:等差数列与等比数列
分析:(Ⅰ)根据a1=2,a3=7求出公差,再代入数列{an}的通项公式求出an;
(Ⅱ)把an代入bn=an•2 an化简后,再由错位相减法求出数列{bn}的前n项和Sn.
(Ⅱ)把an代入bn=an•2 an化简后,再由错位相减法求出数列{bn}的前n项和Sn.
解答:
解:(Ⅰ)∵a1=1,a3=7,∴a1+2d=7,解得d=3,
则an=1+(n-1)×3=3n-2;
(Ⅱ)由(Ⅰ)得,an=3n-2,
∴bn=an•2 an=(3n-2)•23n-2=
•8n,
∴Sn=
[1×81+4×82+7×83+…+(3n-5)•8n-1+(3n-2)•8n]
8Sn=
[1×82+4×83+7×84+…+(3n-5)•8n+(3n-2)•8n+1]
两式相减得-7Sn=
[8+3(82+83+84+…+8n)-(3n-2)•8n+1]
=
[8+3×
-(3n-2)•8n+1]
=-
-
•8n,
则Sn=
+
•8n.
则an=1+(n-1)×3=3n-2;
(Ⅱ)由(Ⅰ)得,an=3n-2,
∴bn=an•2 an=(3n-2)•23n-2=
| 3n-2 |
| 4 |
∴Sn=
| 1 |
| 4 |
8Sn=
| 1 |
| 4 |
两式相减得-7Sn=
| 1 |
| 4 |
=
| 1 |
| 4 |
| 64(1-8n-1) |
| 1-8 |
=-
| 34 |
| 7 |
| 42n-34 |
| 7 |
则Sn=
| 34 |
| 49 |
| 42n-34 |
| 49 |
点评:本题考查数列的通项公式,等差数列与等比数列的综合问题,错位相减法求数列的和,确定数列的通项公式是关键,考查了运算化简能力.
练习册系列答案
相关题目
设奇函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|<
)的最小正周期为π,则( )
| π |
| 2 |
A、f(x)在(0,
| ||||
B、f(x)在(
| ||||
C、f(x)在(0,
| ||||
D、f(x)在(
|