题目内容
1.已知二阶矩阵M有特征值λ=8及其对应的一个特征向量$\overrightarrow e=[\begin{array}{l}-1\\-1\end{array}]$,并且矩阵M对应的变换将点A(-1,2)变换成A'(-2,4).(1)求矩阵M;
(2)设直线l在M-1对应的变换作用下得到了直线m:x-y=6,求l的方程.
分析 (1)利用待定系数法,根据矩阵的乘法,建立方程组,即可求矩阵M;
(2)求得逆矩阵M-1,根据矩阵变换特点,写出两对坐标之间的关系,把已知的点的坐标代入得到直线的方程,得到结果.
解答 解:(1)设二阶矩阵M=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$,由M$\overrightarrow{e}$=λ$\overrightarrow{e}$,
即$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{-1}\\{-1}\end{array}]$=8$[\begin{array}{l}{-1}\\{-1}\end{array}]$,
则$\left\{\begin{array}{l}{a+b=8}\\{c+d=8}\end{array}\right.$,由$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{-1}\\{2}\end{array}]$=$[\begin{array}{l}{-2}\\{4}\end{array}]$,则$\left\{\begin{array}{l}{-a+2b=-2}\\{-c+2d=4}\end{array}\right.$,
解得:a=6,b=2,c=4,d=4,
则M=$[\begin{array}{l}{6}&{2}\\{4}&{4}\end{array}]$,
(2)由M-1=$[\begin{array}{l}{\frac{4}{24-8}}&{\frac{-2}{24-8}}\\{\frac{-4}{24-8}}&{\frac{6}{24-8}}\end{array}]$=$[\begin{array}{l}{\frac{1}{4}}&{-\frac{1}{8}}\\{-\frac{1}{4}}&{\frac{3}{8}}\end{array}]$,
设直线l上任意一点(x,y)在M-1对应的变换作用下得到(x1,y1),
则$[\begin{array}{l}{\frac{1}{4}}&{-\frac{1}{8}}\\{-\frac{1}{4}}&{\frac{3}{8}}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{{x}_{1}}\\{{y}_{1}}\end{array}]$,即$\left\{\begin{array}{l}{{x}_{1}=\frac{2x-y}{8}}\\{{y}_{1}=\frac{-2x+3y}{8}}\end{array}\right.$,
代入x1-y1=6,整理得:x-y=12,
∴直线l的方程为x-y-12=0.
点评 本题主要考查二阶矩阵的变换,逆矩阵的求法,考查运算求解能力,属于基础题.
| A. | $\frac{2\sqrt{5}}{5}$ | B. | $\frac{\sqrt{5}}{3}$ | C. | $\frac{3}{5}$ | D. | $\frac{\sqrt{5}}{5}$ |
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{5}}{4}$ | C. | $\frac{\sqrt{6}}{6}$ | D. | $\frac{3\sqrt{2}}{8}$ |
| A. | {x|-x≤x≤4} | B. | {-1,4} | C. | (1,4) | D. | {(-1,4)} |
| A. | $\frac{64}{3}π$ | B. | $\frac{256}{3}π$ | C. | $\frac{436}{3}π$ | D. | $\frac{2048}{27}\sqrt{3}π$ |
| A. | $\frac{\sqrt{37}}{37}$ | B. | $\frac{\sqrt{13}}{13}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{7}$ |