题目内容

1.已知二阶矩阵M有特征值λ=8及其对应的一个特征向量$\overrightarrow e=[\begin{array}{l}-1\\-1\end{array}]$,并且矩阵M对应的变换将点A(-1,2)变换成A'(-2,4).
(1)求矩阵M;
(2)设直线l在M-1对应的变换作用下得到了直线m:x-y=6,求l的方程.

分析 (1)利用待定系数法,根据矩阵的乘法,建立方程组,即可求矩阵M;
(2)求得逆矩阵M-1,根据矩阵变换特点,写出两对坐标之间的关系,把已知的点的坐标代入得到直线的方程,得到结果.

解答 解:(1)设二阶矩阵M=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$,由M$\overrightarrow{e}$=λ$\overrightarrow{e}$,
即$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{-1}\\{-1}\end{array}]$=8$[\begin{array}{l}{-1}\\{-1}\end{array}]$,
则$\left\{\begin{array}{l}{a+b=8}\\{c+d=8}\end{array}\right.$,由$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{-1}\\{2}\end{array}]$=$[\begin{array}{l}{-2}\\{4}\end{array}]$,则$\left\{\begin{array}{l}{-a+2b=-2}\\{-c+2d=4}\end{array}\right.$,
解得:a=6,b=2,c=4,d=4,
则M=$[\begin{array}{l}{6}&{2}\\{4}&{4}\end{array}]$,
(2)由M-1=$[\begin{array}{l}{\frac{4}{24-8}}&{\frac{-2}{24-8}}\\{\frac{-4}{24-8}}&{\frac{6}{24-8}}\end{array}]$=$[\begin{array}{l}{\frac{1}{4}}&{-\frac{1}{8}}\\{-\frac{1}{4}}&{\frac{3}{8}}\end{array}]$,
设直线l上任意一点(x,y)在M-1对应的变换作用下得到(x1,y1),
则$[\begin{array}{l}{\frac{1}{4}}&{-\frac{1}{8}}\\{-\frac{1}{4}}&{\frac{3}{8}}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{{x}_{1}}\\{{y}_{1}}\end{array}]$,即$\left\{\begin{array}{l}{{x}_{1}=\frac{2x-y}{8}}\\{{y}_{1}=\frac{-2x+3y}{8}}\end{array}\right.$,
代入x1-y1=6,整理得:x-y=12,
∴直线l的方程为x-y-12=0.

点评 本题主要考查二阶矩阵的变换,逆矩阵的求法,考查运算求解能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网