题目内容

6.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,则z=x+2y的最小值为(  )
A.0B.0.5C.2D.9

分析 先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线z=x+2y过点O(0,0)时,z最大值即可.

解答 解:作出可行域如图,
由z=x+2y知,y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
所以动直线y=-$\frac{1}{2}$x+$\frac{1}{2}$z的纵截距$\frac{1}{2}$z取得最小值时,
目标函数取得最小值.
由$\left\{\begin{array}{l}{x=y}\\{x=0}\end{array}\right.$得O(0,0).
结合可行域可知当动直线经过点O(0,0)时,
目标函数取得最小值z=0+2×0=0.
故选:A.

点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网