题目内容

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且经过点(2,0)
(Ⅰ)求椭圆C的方程
(Ⅱ)若与坐标轴不垂直的直线l经过椭圆C的左焦点F(-c,0),且与椭圆C交于不同两点A,B,问是否存在常数λ,(λ为实数),使|AB|=λ|AF||BF|恒成立,若存在,请求出λ的值,若不存在,请说明理由.

分析 (Ⅰ)由题意,a=2,c=$\sqrt{3}$,b=1,即可求椭圆C的方程;
(Ⅱ)直线l的方程为x=my-$\sqrt{3}$,与椭圆方程联立,消去x得:(m2+4)y2-2$\sqrt{3}$my-1=0,利用弦长公式、一元二次方程的根与系数的关系,即可得出结论.

解答 解:(Ⅰ)由题意,a=2,c=$\sqrt{3}$,b=1,
∴椭圆C的方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1;
(Ⅱ)F(-$\sqrt{3}$,0),设A(x1,y1),B(x2,y2),直线l的方程为x=my-$\sqrt{3}$,
与椭圆方程联立,消去x得:(m2+4)y2-2$\sqrt{3}$my-1=0,
y1+y2=$\frac{2\sqrt{3}m}{{m}^{2}+4}$,y1y2=-$\frac{1}{{m}^{2}+4}$,
∴|AB|=$\sqrt{1+{m}^{2}}$|y1-y2|=$\frac{4({m}^{2}+1)}{{m}^{2}+4}$,
∵|AF||BF|=|y1y2|(1+m2)=$\frac{1+{m}^{2}}{{m}^{2}+4}$,
∴|AB|=4|AF||BF|,
∴存在常数λ=4,使|AB|=λ|AF||BF|恒成立.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、弦长公式、一元二次方程的根与系数的关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网