题目内容
15.若点P到点F(2,0)的距离比它到直线x+3=0的距离小1,则点P的轨迹方程是( )| A. | y2=2x | B. | y2=4x | C. | y2=8x | D. | x2=8y |
分析 利用已知条件转化求解抛物线方程即可.
解答 解:点P到点F(2,0)的距离等于它到直线x+2=0的距离,
所以由抛物线的定义知:点P的轨迹是以点F(2,0)为焦点,
以直线x+2=0为准线的抛物线,且p=4,故点P的轨迹方程为y2=8x.
故选:C.
点评 本题考查抛物线的定义以及简单性质的应用,考查计算能力.
练习册系列答案
相关题目
6.如果a>b>0,那么下列不等式中不正确的是( )
| A. | ab>b2 | B. | $\frac{1}{a}$>$\frac{1}{b}$ | C. | $\frac{1}{a}$<$\frac{1}{b}$ | D. | a2>ab |
3.高三学生小罗利用暑假参加社会实践,为了帮助贸易公司的购物网站优化今年国庆节期间的营销策略,他对去年10月1日当天在该网站消费且消费金额不超过1000元的1000名(女性800名,男性200名)网购者,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表(消费金额单位:元):
女性消费情况:
男性消费情况:
(Ⅰ)现从抽取的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的这两名网购者恰好是一男一女的概率;
(Ⅱ)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写右面2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”
附:
(${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000) |
| 人数 | 5 | 10 | 15 | 47 | x |
男性消费情况:
| 消费金额 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000) |
| 人数 | 2 | 3 | 10 | y | 2 |
(Ⅱ)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写右面2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”
| 女性 | 男性 | 总计 | |
| 网购达人 | |||
| 非网购达人 | |||
| 总计 |
| P(k2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
4.如果a,b是异面直线,那么和a,b都垂直的直线( )
| A. | 有且只有一条 | B. | 有一条或两条 | C. | 不存在或一条 | D. | 有无数多条 |