题目内容

3.高三学生小罗利用暑假参加社会实践,为了帮助贸易公司的购物网站优化今年国庆节期间的营销策略,他对去年10月1日当天在该网站消费且消费金额不超过1000元的1000名(女性800名,男性200名)网购者,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表(消费金额单位:元):
消费金额(0,200)[200,400)[400,600)[600,800)[800,1000)
人数5101547x
女性消费情况:
男性消费情况:
消费金额(0,200)[200,400)[400,600)[600,800)[800,1000)
人数2310y2
(Ⅰ)现从抽取的100名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的这两名网购者恰好是一男一女的概率;
(Ⅱ)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写右面2×2列联表,并回答能否在犯错误的概率不超过0.010的前提下认为“是否为‘网购达人’与性别有关?”
女性男性总计
网购达人
非网购达人
总计
P(k2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879
附:
(${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

分析 (Ⅰ)根据分层抽样方法求出x、y的值,利用列举法计算基本事件数,求出对应的概率;
(Ⅱ)列出2×2列联表,计算观测值K2,对照表中数据,判断结论是否成立即可.

解答 解:(Ⅰ)按分层抽样女性应抽取80名,男性应抽取20名.
∴x=80-(5+10+15+47)=3…(2分)
y=20-(2+3+10+2)=3…(3分)
抽出的100名且消费金额在[800,1000](单位:元)的网购者中有三位女性设为A,B,C;两位男性设为a,b,从5人中任选2人的基本事件有:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b)共10件…(4分)
设“选出的两名网购者恰好是一男一女”为事件A
事件A包含的基本事件有:(A,a),(A,b),(B,a),(B,b),(C,a),(C,b)共6件…(5分)∴P(A)=$\frac{6}{10}$=$\frac{3}{5}$.
…(6分)
(Ⅱ)2×2列联表如下表所示

女性男性总计
网购达人50555
非网购达人301545
总计8020100
…(8分)
则k2=$\frac{100(50×15-30×5)^{2}}{80×20×55×45}$…(9分)≈9.091…(10分)
∵9.091>6.635且P(k2≥6.635)=0.010…(11分)
答:在犯错误的概率不超过0.010的前提下可以认为“是否为‘网购达人’”与性别有关…(12分)

点评 本题考查了分层抽样方法的应用问题,也考查了2×2列联表的应用问题,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网