题目内容

7.已知函数f(x)=sin(2x+$\frac{π}{12}$),f′(x)是f(x)的导函数,则函数y=2f(x)+f′(x)的一个单调递减区间是(  )
A.[$\frac{π}{12}$,$\frac{7π}{12}$]B.[-$\frac{5π}{12}$,$\frac{π}{12}$]C.[-$\frac{π}{3}$,$\frac{2π}{3}$]D.[-$\frac{π}{6}$,$\frac{5π}{6}$]

分析 求出函数的导数,利用两角和与差的三角函数化简函数为一个角的一个三角函数的形式,利用三角函数的单调性求解函数的求解函数单调减区间.

解答 解:函数f(x)=sin(2x+$\frac{π}{12}$),f′(x)是f(x)的导函数,
则函数y=2f(x)+f′(x)=2sin(2x+$\frac{π}{12}$)+2cos(2x+$\frac{π}{12}$)
=$2\sqrt{2}$sin(2x+$\frac{π}{12}$+$\frac{π}{4}$)=2$\sqrt{2}$sin(2x+$\frac{π}{3}$),
由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,
可得:kπ+$\frac{π}{12}$≤x≤kπ+$\frac{7π}{12}$,k∈Z,
所以函数的一个单调减区间为:[$\frac{π}{12}$,$\frac{7π}{12}$].
故选:A.

点评 本题考查函数的导数的应用,三角函数的化简以及单调区间的求法,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网