题目内容
设函数f(x)=x2+|x-a|,试判断函数f(x)的奇偶性.
考点:函数奇偶性的判断
专题:函数的性质及应用
分析:根据函数奇偶性的定义,分别进行判断即可.
解答:
解:∵f(x)=x2+|x-a|,
∴f(-x)=x2+|-x-a|=x2+|x+a|,
若函数为偶函数,则f(-x)=f(x),
即x2+|x-a|=x2+|x+a|,
∴|x-a|=|x+a|,解得a=0,
若a≠0,则x2+|x-a|≠x2+|x+a|,即f(-x)≠f(x),且f(-x)≠-f(x),
∴此时函数为非奇非偶函数,
即a=0时,函数为偶函数,
a≠0时,函数为非奇非偶函数.
∴f(-x)=x2+|-x-a|=x2+|x+a|,
若函数为偶函数,则f(-x)=f(x),
即x2+|x-a|=x2+|x+a|,
∴|x-a|=|x+a|,解得a=0,
若a≠0,则x2+|x-a|≠x2+|x+a|,即f(-x)≠f(x),且f(-x)≠-f(x),
∴此时函数为非奇非偶函数,
即a=0时,函数为偶函数,
a≠0时,函数为非奇非偶函数.
点评:本题主要函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键,注意要对a进行分类讨论.
练习册系列答案
相关题目
函数lnx≤xem2-m-1对任意的正实数x恒成立,则m的取值范围是( )
| A、(-∞,0]∪[1,+∞) |
| B、[0,1] |
| C、[e,2e] |
| D、(-∞,e)∪[2e,+∞) |
已知函数f(x)在R上是单调函数,且满足对任意x∈R,都有f[f(x)-3x]=4,则f(4)的值是( )
| A、85 | B、82 | C、80 | D、76 |