题目内容

19.如图,△ABC是等边三角形,△ACD是等腰直角三角形,∠ACD=90°,BD交AC于E,AB=$\sqrt{2}$
(Ⅰ)求∠BEA的度数;
(Ⅱ)求BD及AE的长.

分析 (1)∠BCD=90°+60°=150°,△BCD是等腰三角形,得出∠DBC=15°,根据三角形外角的性质得出∠BEA=75°;
(2)在△BCD中,利用余弦定理解出BD,在△ABE中利用正弦定理解出AE.

解答 解:(Ⅰ)因为△ABC是等边三角形,△ACD是等腰直角三角形,∠ACD=90°
∴∠BCD=90°+60°=150°,
∵CB=AC=CD,∴∠CBD=15°.
所以∠BEA=∠CBE+∠BCE=15°+60°=75°.
(Ⅱ)在△BCD中,由余弦定理得:BD2=CB2+CD2-2CB•CD•cos∠BCD=$2+2-2\sqrt{2}•\sqrt{2}•(-\frac{{\sqrt{3}}}{2})$=$4+2\sqrt{3}$=${(\sqrt{3}+1)^2}$
∴$BD=\sqrt{3}+1$.
在△ABE中,由正弦定理得:$\frac{AE}{sin∠ABE}=\frac{AB}{sin∠AEB}$
即$\frac{AE}{{sin({{60}°}-{{15}°})}}=\frac{{\sqrt{2}}}{{sin{{75}°}}}$.
故$AE=\frac{{\sqrt{2}sin{{45}°}}}{{sin{{75}°}}}$=$\frac{{\sqrt{2}×\frac{{\sqrt{2}}}{2}}}{{\frac{{\sqrt{6}+\sqrt{2}}}{4}}}$=$\sqrt{6}-\sqrt{2}$.

点评 本题考查了利用正余弦定理解三角形,寻找合适的三角形是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网