题目内容

设x5=a0+a1(x+1)+a2(x+1)2+…+a5(x+1)5,则a4=
 
考点:二项式定理的应用
专题:计算题,二项式定理
分析:将x5转化[(x+1)-1]5,然后利用二项式定理进行展开,使之与f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5进行比较,可得所求.
解答: 解:x5=[(x+1)-1]5=
C
0
5
(x+1)5+
C
1
5
(x+1)4(-1)+
C
2
5
(x+1)3(-1)2+
C
3
5
(x+1)2(-1)3+
C
4
5
(x+1)1(-1)4+
C
5
5
(-1)5
而x5=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5
∴a4=
C
1
5
(-1)=-5.
故答案为:-5.
点评:本题主要考查了二项式定理的应用,解题的关键利用x5=[(x+1)-1]5展开,同时考查了计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网