题目内容

已知△ABC中,三个内角A,B,C的对边分别为a,b,c,若asinA-csinC=(a-b)sinB,则角C为(  )
A、60°B、30°
C、120°D、150°
考点:正弦定理
专题:解三角形
分析:已知等式利用正弦定理化简得到关系式,再利用余弦定理表示出cosC,将得出的关系式代入求出cosC的值,即可确定出C的度数.
解答: 解:已知等式asinA-csinC=(a-b)sinB,利用正弦定理化简得:a2-c2=ab-b2
∴a2+b2-c2=ab,
∴cosC=
a2+b2-c2
2ab
=
1
2

∵C为三角形内角,
∴C=60°
故选:A.
点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握公式及定理是解本题的关键,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网