题目内容
12.某程序框图如图所示,若运行该程序后输出的值是$\frac{9}{19}$,则整数t的值是( )| A. | 7 | B. | 8 | C. | 9 | D. | 10 |
分析 根据已知流程图可得程序的功能是计算并输出S=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2k-1}$-$\frac{1}{2k+1}$)的值,由题意解得K的值即可得解.
解答 解:模拟程序的运行,可得程序框图的功能是计算并输出S=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2k-1}$-$\frac{1}{2k+1}$)的值,
由题意可得:S=$\frac{9}{19}$,即:$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2k-1}$-$\frac{1}{2k+1}$)=$\frac{9}{19}$,
∴解得:k=9,K=10,
可得:t=9.
故选:C.
点评 本题考查的知识点是程序框图,其中分析出程序的功能是解答的关键,属于基础题.
练习册系列答案
相关题目
17.若集合$A=\left\{{y|y={x^{\frac{1}{3}}}}\right\}$,B={x|y=ln(1-x)},则A∩B等于( )
| A. | [0,1] | B. | (0,1) | C. | [1,+∞) | D. | (-∞,1) |
2.某几何体的三视图如图所示,则该几何体的表面积为( )

| A. | 12+4$\sqrt{3}$ | B. | 12 | C. | $8+2\sqrt{3}$ | D. | 8 |