题目内容
4.已知双曲线x2-y2=1,点F1,F2为其两个焦点,点P为双曲线上右支上一点,N为线段PF1的中点,O为双曲线的中心,若|PF1|=5,则线段ON的长度为1.5.分析 利用双曲线定义,求出|PF2|=2,利用三角形中位线性质,求出|ON|.
解答 解:∵P是双曲线右支上一点,
∴|PF1|-|PF2|=2,
∵|PF1|=5,
∴|PF2|=3.
∵N是PF1的中点,O是F1F2中点,
∴|ON|=$\frac{1}{2}$|PF2|=1.5
故答案为:1.5.
点评 本题考查双曲线中线段长的求法,是基础题.解题时要认真审题,注意双曲线定义和三角形中位线性质的灵活运用.
练习册系列答案
相关题目
14.复数$z=\frac{10i}{3+i}$(i为虚数单位)的虚部为( )
| A. | 1 | B. | 3 | C. | -3 | D. | $\frac{15}{4}$ |
15.已知P、Q分别在射线y=x(x>0)和y=-x(x>0)上,且△POQ的面积为1,(0为原点),则线段PQ中点M的轨迹为( )
| A. | 双曲线x2-y2=1 | B. | 双曲线x2-y2=1的右支 | ||
| C. | 半圆x2+y2=1(x<0) | D. | 一段圆弧x2+y2=1(x>$\frac{{\sqrt{2}}}{2}$) |
12.某程序框图如图所示,若运行该程序后输出的值是$\frac{9}{19}$,则整数t的值是( )

| A. | 7 | B. | 8 | C. | 9 | D. | 10 |
9.已知集合M={x|x2<1},N={x|x≥0},则M∩N=( )
| A. | {x|0<x<1} | B. | {x|0≤x<1} | C. | {x|x≥0} | D. | {x|-1<x≤0} |
16.下列命题正确的个数是( )①已知p:?x∈R,方程ax2-2x+a=0有正实根,则¬p:?a∈R,方程ax2-2x+a=0有负实根
②?x∈R,x>0
③至少有一个整数,它既不是2的倍数,也不是3的倍数.
②?x∈R,x>0
③至少有一个整数,它既不是2的倍数,也不是3的倍数.
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
14.已知命题$p:?x∈R,{({\frac{1}{10}})^x}≤0$,若(¬p)∧q是假命题,则命题q可以是( )
| A. | 函数y=-2x2+x在[1,3)上单调递减 | B. | ln3>1 | ||
| C. | 若A∩B=A,则B⊆A | D. | lg2+lg3=lg5 |