题目内容

已知ω>0,
m
=(
3
sinωx,cosωx),
n
=(cosωx,-cosωx)且f(x)=m•n+
1
2
的最小正周期为π.
(1)求f(x)的解析式;
(2)已知a,b,c分别为△ABC内角A,B,C所对的边,且a=
19
,c=3,又cosA恰是f(x)在[
π
12
3
]上的最小值,求b及△ABC的面积.
考点:三角函数中的恒等变换应用,平面向量数量积的运算,正弦定理
专题:三角函数的图像与性质
分析:(1)结合平面向量的数量积的坐标运算性质,然后,借助于辅助角公式和二倍角公式进行化简,即可;
(2)利用余弦定理和三角形的面积公式,结合三角函数的图象与性质求解.
解答: 解:(1)∵
m
=(
3
sinωx,cosωx),
n
=(cosωx,-cosωx),
∴f(x)=m•n+
1
2

=
3
sinωxcosωx-cos2ωx+
1
2

=
3
2
sin2ωx-
1
2
cos2ωx
=sin(2ωx-
π
6

∵f(x)的最小正周期为π.
∵T=

∴ω=1,
∴f(x)=sin(2x-
π
6
).
∴f(x)的解析式:f(x)=sin(2x-
π
6
).
(2)∵x∈[
π
12
3
],
∴(2x-
π
6
)∈[0,
6
].
∴f(x)=sin(2x-
π
6
)∈[-
1
2
,1
].
∴f(x)在[
π
12
3
]上的最小值-
1
2

∴cosA=-
1
2

由余弦定理,得a2=b2+c2-2bccosA,
∴b2+6b-10=0,
∴b=
19
-3
或b=-
19
-3
(舍去),
S△ABC=
1
2
bcsinA=
1
2
19
-3
)×3×
3
2

=
3
51
-9
3
4

∴△ABC的面积=
3
51
-9
3
4
点评:本题重点考查了平面向量的数量积的坐标运算性质,辅助角公式和二倍角公式,余弦定理和三角形的面积公式,三角函数的图象与性质等知识,考查比较综合,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网