题目内容

19.已知直线2x+y-2=0经过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的上顶点与右焦点,则椭圆的方程为(  )
A.$\frac{x^2}{5}+\frac{y^2}{4}=1$B.$\frac{x^2}{4}+{y^2}=1$C.$\frac{x^2}{9}+\frac{y^2}{4}=1$D.$\frac{x^2}{6}+\frac{y^2}{4}=1$

分析 求出直线与坐标轴的解交点,推出椭圆的a,b,即可得到椭圆方程.

解答 解:直线2x+y-2=0经过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的上顶点与右焦点,
可得c=1,b=2,可得a=$\sqrt{5}$,
则椭圆的方程为:$\frac{x^2}{5}+\frac{y^2}{4}=1$.
故选:A.

点评 本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网