题目内容
9.P是双曲线C:$\frac{x^2}{2}-{y^2}$=1右支上一点,直线l是双曲线C的一条渐近线,P在l上的射影为Q,F1是双曲线C的左焦点,则|PF1|+|PQ|的最小值为( )| A. | 1 | B. | $2+\frac{{\sqrt{15}}}{5}$ | C. | $4+\frac{{\sqrt{15}}}{5}$ | D. | $2\sqrt{2}+1$ |
分析 依题意,当且仅当Q、P、F2三点共线,且P在F2,Q之间时,|PF2|+|PQ|最小,且最小值为F2到l的距离,从而可求得|PF1|+|PQ|的最小值.
解答 解:设右焦点分别为F2,
∵∴|PF1|-|PF2|=2$\sqrt{2}$,
∴|PF1|=|PF2|+2$\sqrt{2}$,
∴|PF1|+|PQ|=|PF2|+2$\sqrt{2}$+|PQ|,
当且仅当Q、P、F2三点共线,且P在F2,Q之间时,|PF2|+|PQ|最小,且最小值为F2到l的距离,
可得l的方程为y=$±\frac{1}{\sqrt{2}}$x,F2($\sqrt{3},0$),F2到l的距离d=1
∴|PQ|+|PF1|的最小值为2$\sqrt{2}$+1.
故选D.
点评 本题考查双曲线的简单性质,利用双曲线的定义将|PF1|转化为|PF2|+2$\sqrt{2}$是关键,考查转化思想,属于中档题.
练习册系列答案
相关题目
20.在两坐标轴上截距均为m(m∈R)的直线l1与直线l2:2x+2y-3=0的距离为$\sqrt{2}$,则m=( )
| A. | $\frac{7}{2}$ | B. | 7 | C. | -1或7 | D. | -$\frac{1}{2}$或$\frac{7}{2}$ |
4.二项式${({{x^2}-\frac{1}{x}})^6}$的展开式中( )
| A. | 不含x9项 | B. | 含x4项 | C. | 含x2项 | D. | 不含x项 |
1.已知M={x|0<x<2},N={x|y=lg(x-1)},则M∩N=( )
| A. | {x|0<x<2} | B. | {x|1<x<2} | C. | {x|x>0} | D. | {x|x≥1} |
19.已知直线2x+y-2=0经过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的上顶点与右焦点,则椭圆的方程为( )
| A. | $\frac{x^2}{5}+\frac{y^2}{4}=1$ | B. | $\frac{x^2}{4}+{y^2}=1$ | C. | $\frac{x^2}{9}+\frac{y^2}{4}=1$ | D. | $\frac{x^2}{6}+\frac{y^2}{4}=1$ |