题目内容
3.直线2x-y+a=0与3x+y-3=0交于第一象限,当点P(x,y)在不等式组$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$表示的区域上运动时,m=4x+3y的最大值为8,此时n=$\frac{y}{x+3}$的最大值为$\frac{3}{4}$.分析 由题意,由$\left\{\begin{array}{l}{2x-y+a=0}\\{3x+y-3=0}\end{array}\right.$,可得交点,利用当点P(x,y)在不等式组$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的区域上运动时,m=4x+3y的最大值为8,求出a.然后利用线性规划求解目标函数的最值即可.
解答
解:由题意,由$\left\{\begin{array}{l}{2x-y+a=0}\\{3x+y-3=0}\end{array}\right.$,可得交点($\frac{3-a}{5}$,$\frac{6+3a}{5}$),
当点P(x,y)在不等式组$\left\{\begin{array}{l}{2x-y+a≥0}\\{3x+y-3≤0}\end{array}\right.$,表示的区域上运动时,m=4x+3y的最大值为8,
∴4×$\frac{3-a}{5}$+3×$\frac{6+3a}{5}$=8,∴a=2,
此时,直线2x-y+2=0与3x+y-3=0的交点坐标为($\frac{1}{5}$,$\frac{12}{5}$),交于第一象限,
画出约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{3x+y-3≤0}\end{array}\right.$的可行域,目标函数n=$\frac{y}{x+3}$的几何意义是可行域内的点与(-3,0)连线的斜率,
由可行域可知A与(-3,0)连线的斜率最大,由$\left\{\begin{array}{l}{2x-y+2=0}\\{3x+y-3=0}\end{array}\right.$,解得A($\frac{1}{5}$,$\frac{12}{5}$),
n=$\frac{y}{x+3}$的最大值为:$\frac{3}{4}$.
故答案为:$\frac{3}{4}$.
点评 本题考查线性规划知识,考查学生的计算能力,属于中档题.
| A. | 2n | B. | 3n | C. | 4n | D. | 4n-1 |
| A. | $(0,\sqrt{3})$ | B. | $(-\sqrt{3},0)∪(0,\sqrt{3})$ | C. | $(0,\frac{{\sqrt{3}}}{3})$ | D. | $(-\frac{{\sqrt{3}}}{3},0)∪(0,\frac{{\sqrt{3}}}{3})$ |