题目内容

11.设函数f(x)=ax3-(a+b)x2+bx+c,其中a>0,b、c∈R,若f′($\frac{1}{3}$)=0,求f(x)的单调区间.

分析 由f′($\frac{1}{3}$)=0求出a=b,然后求函数的单调区间;

解答 解:f′(x)=3ax2-2(a+b)x+b,
由f′($\frac{1}{3}$)=0,得$\frac{1}{3}$a-$\frac{2}{3}$(a+b)+b=0,
故a=b,
故f(x)=ax3-2ax2+ax+c.
由f'(x)=a(3x2-4x+1)=0,得x1=$\frac{1}{3}$,x2=1.
列表:

x(-∞,$\frac{1}{3}$)$\frac{1}{3}$($\frac{1}{3}$,1)1(1,+∞)
f'(x)+0-0+
f(x)极大值极小值
由表可得,函数f(x)的单调增区间是(-∞,$\frac{1}{3}$)及(1,+∞).
单调减区间是($\frac{1}{3}$,1).

点评 本题考查导数的基本运算以及利用导数研究函数的极值与最值问题,通过表格可以比较直观的体现函数的单调性与最值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网