ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=
g£¨x£©=asin£¨
x+
£©-2a+2£¨a£¾0£©£¬¸ø³öÏÂÁнáÂÛ£º
½áÂÛ£º
¢Ùº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬
]£»
¢Úº¯Êýg£¨x£©ÔÚ[0£¬1]ÉÏÊÇÔöº¯Êý£»
¢Û¶ÔÈÎÒâa£¾0£¬·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚºãÓн⣻
¢ÜÈô´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[
£¬
]£®
ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊÇ £®
|
| ¦Ð |
| 3 |
| 3¦Ð |
| 2 |
½áÂÛ£º
¢Ùº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬
| 2 |
| 3 |
¢Úº¯Êýg£¨x£©ÔÚ[0£¬1]ÉÏÊÇÔöº¯Êý£»
¢Û¶ÔÈÎÒâa£¾0£¬·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚºãÓн⣻
¢ÜÈô´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[
| 4 |
| 9 |
| 4 |
| 5 |
ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊÇ
¿¼µã£º·Ö¶Îº¯ÊýµÄÓ¦ÓÃ
רÌ⣺ÔĶÁÐÍ,º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£ºÇóµÃf£¨x£©µÄ¸÷¶ÎµÄÖµÓò£¬ÔÙÇó²¢¼¯£¬¼´¿ÉÅжϢ٣»»¯¼òg£¨x£©£¬ÅжÏg£¨x£©µÄµ¥µ÷ÐÔ¼´¿ÉÅжϢڣ»
Çó³ög£¨x£©ÔÚ[0£¬1]µÄÖµÓò£¬Çó³ö·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚÎÞ½âµÄaµÄ·¶Î§£¬¼´¿ÉÅжϢۣ»
Óɢ۵ã¬ÓнâµÄÌõ¼þΪ£ºg£¨x£©µÄ×îСֵ²»´óÓÚf£¨x£©µÄ×î´óÖµÇÒg£¨x£©µÄ×î´óÖµ²»Ð¡ÓÚf£¨x£©µÄ×îСֵ£¬½â³öaµÄ·¶Î§£¬¼´¿ÉÅжϢܣ®
Çó³ög£¨x£©ÔÚ[0£¬1]µÄÖµÓò£¬Çó³ö·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚÎÞ½âµÄaµÄ·¶Î§£¬¼´¿ÉÅжϢۣ»
Óɢ۵ã¬ÓнâµÄÌõ¼þΪ£ºg£¨x£©µÄ×îСֵ²»´óÓÚf£¨x£©µÄ×î´óÖµÇÒg£¨x£©µÄ×î´óÖµ²»Ð¡ÓÚf£¨x£©µÄ×îСֵ£¬½â³öaµÄ·¶Î§£¬¼´¿ÉÅжϢܣ®
½â´ð£º
½â£ºµ±x¡Ê[0£¬
]ʱ£¬f£¨x£©=
-
xÊǵݼõº¯Êý£¬Ôòf£¨x£©¡Ê[0£¬
]£¬
µ±x¡Ê£¨
£¬1]ʱ£¬f£¨x£©=
=2£¨x+2£©+
-8£¬f¡ä£¨x£©=2-
£¾0£¬Ôòf£¨x£©ÔÚ£¨
£¬1]ÉϵÝÔö£¬
Ôòf£¨x£©¡Ê£¨
£¬
]£®
Ôòx¡Ê[0£¬1]ʱ£¬f£¨x£©¡Ê[0£¬
]£¬¹Ê¢ÙÕýÈ·£»
µ±x¡Ê[0£¬1]ʱ£¬g£¨x£©=asin£¨
x+
£©-2a+2£¨a£¾0£©=-acos
x-2a+2£¬
ÓÉa£¾0£¬0¡Ü
x¡Ü
£¬Ôòg£¨x£©ÔÚ[0£¬1]ÉÏÊǵÝÔöº¯Êý£¬¹Ê¢ÚÕýÈ·£»
ÓÉ¢ÚÖª£¬a£¾0£¬x¡Ê[0£¬1]ʱg£¨x£©¡Ê[2-3a£¬2-
]£¬
Èô2-3a£¾
»ò2-
£¼0£¬¼´0£¼a£¼
»òa£¾
£¬·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚÎ޽⣬¹Ê¢Û´í£»
¹Ê´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬Ôò
½âµÃ
¡Üa¡Ü
£®
¹Ê¢ÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü£®
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
µ±x¡Ê£¨
| 1 |
| 2 |
| 2x2 |
| x+2 |
| 8 |
| x+2 |
| 8 |
| (x+2)2 |
| 1 |
| 2 |
Ôòf£¨x£©¡Ê£¨
| 1 |
| 5 |
| 2 |
| 3 |
Ôòx¡Ê[0£¬1]ʱ£¬f£¨x£©¡Ê[0£¬
| 2 |
| 3 |
µ±x¡Ê[0£¬1]ʱ£¬g£¨x£©=asin£¨
| ¦Ð |
| 3 |
| 3¦Ð |
| 2 |
| ¦Ð |
| 3 |
ÓÉa£¾0£¬0¡Ü
| ¦Ð |
| 3 |
| ¦Ð |
| 3 |
ÓÉ¢ÚÖª£¬a£¾0£¬x¡Ê[0£¬1]ʱg£¨x£©¡Ê[2-3a£¬2-
| 5a |
| 2 |
Èô2-3a£¾
| 2 |
| 3 |
| 5a |
| 2 |
| 4 |
| 9 |
| 4 |
| 5 |
¹Ê´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬Ôò
|
| 4 |
| 9 |
| 4 |
| 5 |
¹Ê¢ÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü£®
µãÆÀ£º±¾Ì⿼²é·Ö¶Îº¯ÊýµÄÔËÓ㬿¼²éº¯ÊýµÄÖµÓòºÍµ¥µ÷ÐÔ¼°ÔËÓ㬿¼²é´æÔÚÐÔÃüÌâ³ÉÁ¢µÄÌõ¼þ£¬×ª»¯Îª×îÖµÖ®¼äµÄ¹ØÏµ£¬ÊôÓÚÒ×´íÌâºÍÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÔÚ¡÷ABCÖУ¬A=60¡ã£¬b=1£¬S¡÷ABC=
£¬Ôò
=£¨¡¡¡¡£©
| 3 |
| a+b+c |
| sinA+sinB+sinC |
A¡¢
| ||||
B¡¢
| ||||
C¡¢
| ||||
D¡¢2
|
¶Ôa£¬b¡ÊR£¬¶¨Ò壺max£¨a£¬b£©=
£¬Ôòº¯Êýf£¨x£©=max£¨6x-6£¬-x+8£©£¨x¡ÊR£©µÄ×îСֵΪ £®
|
º¯Êýf£¨x£©=2x+sinxµÄ²¿·ÖͼÏó¿ÉÄÜÊÇ£¨¡¡¡¡£©
| A¡¢ |
| B¡¢ |
| C¡¢ |
| D¡¢ |