题目内容

如图,四边形ABCD是菱形,PA⊥ABCD,AD=2,∠BAD=60°.
(1)求证:平面PBD⊥平面PAC;
(2)当二面角A-PC-B的余弦值为
21
7
时,求直线PB与平面PAD所成角的正弦值.
考点:直线与平面所成的角,平面与平面垂直的判定
专题:
分析:(1)根据菱形的对角线互相垂直及线面垂直的性质,可得AC⊥BD,PA⊥BD,由线面垂直的判定定理可得BD⊥面 PAC,再由面面垂直的判定定理可得面PBD⊥面PAC;(2)过B作BE⊥AD于点E,连结PE.由PA⊥平面ABCD得PA⊥BE,结合PA∩AD=A证出BE⊥平面PAD,可得∠BPE就是直线PB与平面PAD所成角.Rt△BPE中,利用三角函数的定义算出.
解答: 证明:(1)因为四边形ABCD是菱形,
所以AC⊥BD
因为PA⊥平面ABCD,
所有PA⊥BD,
又因为PA∩AC=A,
所以BD⊥面 PAC.
而BD?面PBD,
所以面PBD⊥面PAC.
(2)过B作BE⊥AD于点E,连结PE
∵PA⊥平面ABCD,BE?平面ABCD,∴PA⊥BE
∵BE⊥AD,PA∩AD=A
∴BE⊥平面PAD,可得∠BPE就是直线PB与平面PAD所成角
∵Rt△BPE中,BE=
3
,PE=
PA2+AE2
=
5
,PB=2
2

∴cos∠BPE=
PE
PB
=
6
4
点评:本题在特殊的四棱锥中证明线面垂直、求直线与平面所成角并求二面角的余弦值.着重考查了线面垂直的判定与性质、直线与平面所成角的求法和二面角的定义与求法等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网