题目内容
19.| A. | 2 | B. | 1 | C. | $\frac{8}{3}$ | D. | $\frac{4}{3}$ |
分析 建立坐标系,设点P的坐标,可得P关于直线BC的对称点P1的坐标,和P关于y轴的对称点P2的坐标,由P1,Q,R,P2四点共线可得直线的方程,由于过△ABC的重心,代入可得关于a的方程,解之可得P的坐标,进而可得AP,BP的值.
解答
解:建立如图所示的坐标系:
可得B(4,0),C(0,4),故直线BC的方程为x+y=4,
△ABC的重心为($\frac{4}{3}$,$\frac{4}{3}$),设P(a,0),其中0<a<4,
则点P关于直线BC的对称点P1(x,y),满足$\left\{\begin{array}{l}{\frac{a+x}{2}+\frac{y}{2}=4}\\{\frac{y}{x-a}•(-1)=-1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=4}\\{y=4-a}\end{array}\right.$,即P1(4,4-a),
易得P关于y轴的对称点P2(-a,0),
由光的反射原理可知P1,Q,R,P2四点共线,
直线QR的斜率为k=$\frac{4-a}{4+a}$,故直线QR的方程为y=$\frac{4-a}{4+a}$(x+a),
由于直线QR过△ABC的重心($\frac{4}{3}$,$\frac{4}{3}$),代入化简可得3a2-4a=0,
解得a=$\frac{4}{3}$,或a=0(舍去),故P($\frac{4}{3}$,0),故AP=$\frac{4}{3}$,BP=$\frac{8}{3}$
故选C.
点评 本题考查直线与点的对称问题,涉及直线方程的求解以及光的反射原理的应用,属中档题.
练习册系列答案
相关题目
9.
如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在x轴上,记△BCF的面积为S1,△ACF的面积为S2,则$\frac{{S}_{1}^{2}}{{S}_{2}^{2}}$等于是( )
| A. | $\frac{{|{BF}|-1}}{{|{AF}|-1}}$ | B. | $\frac{{{{|{BF}|}^2}-1}}{{{{|{AF}|}^2}-1}}$ | C. | $\frac{{|{BF}|+1}}{{|{AF}|+1}}$ | D. | $\frac{{{{|{BF}|}^2}+1}}{{{{|{AF}|}^2}+1}}$ |
10.下列说法正确的是( )
| A. | 命题“若x2=1,则x=1的否命题为:“若x2=1,则x≠1” | |
| B. | “m=1”是“直线x-my=0和直线x+my=0互相垂直”的充要条件 | |
| C. | 命题“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1<0” | |
| D. | 命题“已知A,B为一个三角形两内角,若A=B,则sinA=sinB”的否命题为真命题 |
7.过抛物线x2=4y的焦点且与其对称轴垂直的弦AB的长度是( )
| A. | 1 | B. | 2 | C. | 4 | D. | 8 |
14.已知菱形ABCD的边长为4,∠ABC=120°,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率( )
| A. | $\frac{π}{4}$ | B. | 1-$\frac{π}{4}$ | C. | $\frac{{\sqrt{3}π}}{24}$ | D. | $1-\frac{{\sqrt{3}π}}{24}$ |
11.不存在函数f(x)满足,对任意x∈R都有( )
| A. | f(|x+1|)=x2+2x | B. | f(cos2x)=cosx | C. | f(sinx)=cos2x | D. | f(cosx)=cos2x |
9.
如图,已知正六棱柱的最大对角面的面积为4m2,互相平行的两个侧面的距离为 2m,则这个六棱柱的体积为( )
| A. | 3m3 | B. | 6m3 | C. | 12m3 | D. | 15m3 |